66 research outputs found

    Small localized black holes in a braneworld: Formulation and numerical method

    Get PDF
    No realistic black holes localized on a 3-brane in the Randall-Sundrum infinite braneworld have been found so far. The problem of finding a static black hole solution is reduced to a boundary value problem. We solve it by means of a numerical method, and show numerical examples of a localized black hole whose horizon radius is small compared to the bulk curvature scale. The sequence of small localized black holes exhibits a smooth transition from a five-dimensional Schwarzschild black hole, which is a solution in the limit of small horizon radius. The localized black hole tends to flatten as its horizon radius increases. However, it becomes difficult to find black hole solutions as its horizon radius increases.Comment: RevTeX, 13 pages, 6 figures, references corrected, typos corrected; to appear in Phys.Rev.

    Afshar's Experiment does not show a Violation of Complementarity

    Full text link
    A recent experiment performed by S. Afshar [first reported by M. Chown, New Scientist {\bf 183}, 30 (2004)] is analyzed. It was claimed that this experiment could be interpreted as a demonstration of a violation of the principle of complementarity in quantum mechanics. Instead, it is shown here that it can be understood in terms of classical wave optics and the standard interpretation of quantum mechanics. Its performance is quantified and it is concluded that the experiment is suboptimal in the sense that it does not fully exhaust the limits imposed by quantum mechanics.Comment: 6 pages, 6 figure

    Single Spin Measurement using Single Electron Transistors to Probe Two Electron Systems

    Get PDF
    We present a method for measuring single spins embedded in a solid by probing two electron systems with a single electron transistor (SET). Restrictions imposed by the Pauli Principle on allowed two electron states mean that the spin state of such systems has a profound impact on the orbital states (positions) of the electrons, a parameter which SET's are extremely well suited to measure. We focus on a particular system capable of being fabricated with current technology: a Te double donor in Si adjacent to a Si/SiO2 interface and lying directly beneath the SET island electrode, and we outline a measurement strategy capable of resolving single electron and nuclear spins in this system. We discuss the limitations of the measurement imposed by spin scattering arising from fluctuations emanating from the SET and from lattice phonons. We conclude that measurement of single spins, a necessary requirement for several proposed quantum computer architectures, is feasible in Si using this strategy.Comment: 22 Pages, 8 Figures; revised version contains updated references and small textual changes. Submitted to Phys. Rev.

    Teleportation of a quantum state of a spatial mode with a single massive particle

    Full text link
    Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends the work of Phys. Rev. Lett. 103, 200502 (2009

    Spherically Symmetric Braneworld Solutions with R_{4} term in the Bulk

    Get PDF
    An analysis of a spherically symmetric braneworld configuration is performed when the intrinsic curvature scalar is included in the bulk action; the vanishing of the electric part of the Weyl tensor is used as the boundary condition for the embedding of the brane in the bulk. All the solutions outside a static localized matter distribution are found; some of them are of the Schwarzschild-(A)dS_{4} form. Two modified Oppenheimer-Volkoff interior solutions are also found; one is matched to a Schwarzschild-(A)dS_{4} exterior, while the other does not. A non-universal gravitational constant arises, depending on the density of the considered object; however, the conventional limits of the Newton's constant are recovered. An upper bound of the order of TeV for the energy string scale is extracted from the known solar system measurements (experiments). On the contrary, in usual brane dynamics, this string scale is calculated to be larger than TeV.Comment: 23 pages, 1 figure, one minor chang

    Spinor condensates and light scattering from Bose-Einstein condensates

    Full text link
    These notes discuss two aspects of the physics of atomic Bose-Einstein condensates: optical properties and spinor condensates. The first topic includes light scattering experiments which probe the excitations of a condensate in both the free-particle and phonon regime. At higher light intensity, a new form of superradiance and phase-coherent matter wave amplification were observed. We also discuss properties of spinor condensates and describe studies of ground--state spin domain structures and dynamical studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999 Summer School, Session LXXI

    A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    Get PDF
    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000

    General plant simulators for metallurgical plant performance

    No full text
    The usefulness of simulation as a technique for metallurgical process design and optimization studies has been greatly extended over the last few years by the development of a number of general purpose simulation packages. The packages, or simulators, all have the common objective of presenting the mathematical models and simulation methods in a form which is readily usable by plant engineers and metallurgists. To date, most simulators have been concerned with steady state simulation, but packages capable of dynamic simulation are now becoming available. The paper outlines the essential features of versatile steady state and dynamic simulators. Typical applications are presented by considering examples of design and optimization studies. Limitation on the use of simulators are also presented

    The criminal profiling illusion:what's behind the smoke and mirrors?

    Get PDF
    There is a belief that criminal profilers can predict a criminal's characteristics from crime scene evidence. In this article, the authors argue that this belief may be an illusion and explain how people may have been misled into believing that criminal profiling (CP) works despite no sound theoretical grounding and no strong empirical support for this possibility. Potentially responsible for this illusory belief is the information that people acquire about CP, which is heavily influenced by anecdotes, repetition of the message that profiling works, the expert profiler label, and a disproportionate emphasis on correct predictions. Also potentially responsible are aspects of information processing such as reasoning errors, creating meaning out of ambiguous information, imitating good ideas, and inferring fact from fiction. The authors conclude that CP should not be used as an investigative tool because it lacks scientific support
    • 

    corecore