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No realistic black holes localized on a 3-brane in the Randall-Sundrum infinite braneworld have been found
so far. The problem of finding a static black hole solution is reduced to a boundary value problem. We solve
it by means of a numerical method, and show numerical examples of a localized black hole whose horizon
radius is small compared to the bulk curvature scale. The sequence of small localized black holes exhibits a
smooth transition from a five-dimensional Schwarzschild black hole, which is a solution in the limit of small
horizon radius. The localized black hole tends to flatten as its horizon radius increases. However, it becomes
difficult to find black hole solutions as its horizon radius increases.
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I. INTRODUCTION

Higher-dimensional black holes have been considered for
a long time as purely theoretical applications motivated by
higher-dimensional theories, such as string theory. However,
recent developments in the scenario of large extra dimen-
sions @1# have aroused new interest in such black holes. In
the braneworld scenario, an interesting possibility of black
hole production at a collider was pointed out@2,3# ~see, e.g.,
@4# and references therein!. There are other types of brane-
world models proposed by Randall and Sundrum~RS! @5,6#.
In these models, the geometry warped in the direction of an
extra dimension is used to explain the hierarchy between the
TeV scale and the Planck scale, and to realize four-
dimensional gravity effectively on the 3-brane. Also in the
context of RS models, higher-dimensional black holes may
play an important role. These so-called braneworld scenarios
provide new and interesting situations to investigate higher-
dimensional black holes.

In the model of large extra dimensions, a physically
meaningful sequence of black hole solutions will be obtained
as a slight modification of the higher-dimensional Kerr black
hole @7# ~or more simply the Schwarzschild black hole
@8–10#! if the horizon radius is sufficiently small compared
to the extension of extra dimensions and the self-gravity due
to periodic boundary is weak. As another sequence, there are
the black string solutions. A black string is in general un-
stable to linear perturbations with long wavelength in the
direction along the string, which is called Gregory-Laflamme
instability @11#. ~A stability analysis of black strings is also
found in Ref. @12#.! Therefore, a black string is unstable
when the horizon radius of the black string is sufficiently
small compared to the extension of the extra dimension. For

such a small black hole, the former sequence is expected to
be stable. For RS models, since the 3-brane has tension, it is
more difficult to find black hole solutions. Trivial black
string solution is allowed also in these models, and it be-
comes unstable in the same way. There are many discussions
about black holes in this model and some black hole solu-
tions have been considered by several authors@13–28#. A
strategy to construct a black hole solution is to assume an
induced metric on the 3-brane asinitial data, and extend it to
the bulk analytically or numerically. This method generally
results in a naked singularity in the bulk since there is no
guarantee that the induced metric assumed as a boundary
condition is compatible with a regular geometry. If we ran-
domly specify the boundary metric on the 3-brane, almost all
solutions develop a naked singularity. After all, no realistic
black hole solutions which are stable and have no naked
singularity have been found so far, and finding them is an
interesting open question of nonlinear gravity in the brane-
world.

Successful recovery mechanism of 4D gravity on the
3-brane@29–37# suggests the existence of black holes in the
RS infinite braneworld@6#. The shape of the black holes is
conjectured based on the Gregory-Laflamme instability@26#.
It was argued that an unstable black string will be pinched
into many black holes. In addition to black holes in the bulk,
there will be a black hole that is localized on the 3-brane. We
can imagine this as a black hole bound to a domain wall if
the 3-brane is realized by a domain wall@38#. An exact so-
lution representing a localized black hole is known in the 4D
braneworld model, which we call in this paper the Emparan-
Horowitz-Myers ~EHM! solution @39#. However the corre-
sponding solution in the original 5D braneworld model has
not been discovered. While the localization of a black hole
was motivated by the classical instability of black string, the
anticipated dynamics of pinching off the horizon is ques-
tioned by Horowitz and Maeda@40#. Recently, Wiseman dis-
covered nonuniform black strings by numerical calculation
@41#. The obtained solutions are likely to be unstable, but
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they are suggestive of a missing link between the localized
black hole and the black string. On the other hand, based on
an extensive use of the AdS/CFT correspondence, there is
another discussion anticipating the absence of static localized
black holes@42,43#.

The present paper explores the problem of black holes in
the RS infinite braneworld. We consider a numerical con-
struction of a black hole solution in this model. The method
we use in this paper is based on a scheme developed by
Wiseman@44#. Our method does not require any assumptions
for the induced metric on the 3-brane. We solve Einstein
equations numerically under the boundary conditions deter-
mined by physical requirements. We will find small black
hole solutions, whose horizon radius is smaller than the AdS
curvature radius, although large black hole solutions have
not been discovered.

In the next section, we explain our method formulating
the problem to be suitable for numerical calculation, and the
boundary conditions are also discussed. The examples of nu-
merical solutions are shown in Sec. III. Section IV is devoted
to a summary.

II. FORMULATION AS A BOUNDARY VALUE PROBLEM

A. Conformal transformation

To obtain black hole solutions in the RS infinite brane-
world model, it is crucial to formulate the problem as a
boundary value problem without assuming any artificial
boundary conditions. We follow and develop the numerical
method developed in Ref.@44# ~see also@41#!. What we want
to find is a static black hole solution that is localized on the
brane. For simplicity, we further restrict our attention to the
configuration with 5D axial symmetry~4D spherical symme-
try!. Under the static and axisymmetric assumption, the met-
ric depends only on the radial coordinater and the coordi-
natez in the direction of the extra dimension. Then, without
loss of generality, the metric can be written as

ds25
,2

z2
@2T2dt21e2R~dr21dz2!1r 2e2CdV2#, ~1!

wheredV25du21sin2udf2 represents the line element on a
unit 2-sphere. The cosmological constant in the bulk is re-
lated to the bulk curvature length, by L526/,2. If we set
T51 andR5C50, this metric becomes the AdS metric in
the Poincare´ coordinates. Since we consider a localized black
hole, polar coordinates

r 5r sinx,

z5,1r cosx, ~2!

j5x2,

are more convenient. Then, we have

dr21dz25dr21
r2

4j
dj2. ~3!

The angular coordinatej is useful to treat the coordinate
singularity at x50 numerically since the singularity be-
comes milder inj coordinate as we will see later@45#.

For numerical calculations, it is convenient if the bound-
aries are located on lines where one of the coordinates is
constant. This can be achieved in general by using the re-
sidual gauge degrees of freedom. The metric form~1! has the
gauge degrees of freedom of conformal transformations in
the two-dimensional space spanned byr and z. For our
present purpose, it is convenient to use the conformal polar
coordinates (z,x), wherez5 logr. Using these coordinates,
we havedr21dz25r2(dz21dx2). For the conformal trans-
formation z85 f (z,x) and x85g(z,x), f and g satisfy the
Cauchy-Riemann relations. With a functionc(z,x), we have

dz821dx825c~z,x!~dz21dx2!. ~4!

We can use these conformal degrees of freedom to deform
the shape of the boundaries. From the Cauchy-Riemann re-
lations,g ~and alsof ) satisfies Laplace equation, and thusg
is completely determined by specifying its boundary condi-
tions. Suppose we setg50 on the axis andg5p/2 on the
brane, and impose Neumann boundary conditions on the ho-
rizon boundary and the asymptotic boundary. The transfor-
mation f is determined by integrating the Cauchy-Riemann
relations. The Neumann conditions forg on the horizon
boundary and on the asymptotic boundary guarantee the con-
stancy off on these two boundaries. In this manner, we can
generally find a conformal transformation that transforms
each boundary to a constant coordinate line. Therefore, the
location of the event horizon can be transformed to be

ruhorizon5const5rh , ~5!

and the brane can be placed atz5, @30#. Here we note that
f is uniquely determined up to adding a constant, and hence,
the difference of the value ofz8 between two points cannot
be changed arbitrarily. We therefore do not have a degree of
freedom to change the ratior/rh for a given solution.

B. Elliptic equations and constraint equations

Let us consider the elliptic equations and constraint equa-
tions that we solve. From the five dimensional vacuum Ein-
stein equations,G n

m
ªRn

m2 2
3 Lgm

n 50, we obtain an elliptic
equation for each metric component. Respective equations
are given fromG t

t , (G t
t2G r

r2G j
j12G u

u) andG u
u as

DT52
4T

z2 S 11
L,2

6
e2RD2

4xT,j

r2 S cotx1
2r

z
12xC,jD12T,rS 1

r
2

2,

rz
2C,rD1

2T

r F S 12
,

zDC,r2
2x sinx

z
C,jG , ~6!
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DR5
12e2(R2C)

r 2
1

2

z2 S 11
L,2

6
e2RD1

4xT,j

r2T
S cotx1

r

z
12xC,jD1

2T,r

T S ,

rz
1C,rD1

4xC,j

r2 S cotx1
2r

z
1xC,jD

1C,rS 2
2

r
1

4,

rz
1C,rD , ~7!

DC52
12e2(R2C)

r 2
2

4

z2 S 11
L,2

6
e2RD2

2xT,j

r2T
S cotx1

r

z
12xC,jD2

T,r

T S ,

rz
1C,rD2

2xC,j

r2 S 4cotx1
5r

z
14xC,jD

1C,rS 1

r
2

5,

rz
22C,rD , ~8!

where a comma means a partial derivative, andD5] r
21]z

25]r
21r21]r12r22(2j]j

21]j) is the Laplace operator. The first
terms in the equations forR andC have the factor that behaves asr 22}x22 whenx→0. Introduction ofj changes this severe
behavior and it makes the terms more tractable in numerical calculation. Constraint equations are obtained, respectively, from
G j

r and (G t
t2G r

r1G j
j12G u

u) as

Q1ªjTS ,2e2R

z2 D G j
r ,

5jFR,jT,r2T,jr1T,jS R,r1
1

r D G1TFjR,jS 2C,r2
1

r
1

3,

rzD22jC,jr2C,rS x

tanx
12jC,jD

1R,rS x

tanx
1

3rAj

2z
12jC,jD G50, ~9!

Q2ª2
1

2 S ,2e2R

z2 D ~G t
t2G r

r1G j
j12G u

u!,

5
4jT,jj

r2
1

2T,j

r2 S 11
2x

tanx
1

3rAj

z
12j~2C,j2R,j! D 1T,rS 3,

rz
12C,r1R,rD1TF 6

z2 S 12
uLu,2

6
e2RD

1
12e2(R2C)

r 2
1

8jC,jj

r2
1

12C,j

r2 S 1

3
1

x

tanx
1

rAj

z
1jC,jD 1C,rS 6,

rz
2

2

r
1C,rD

2
2R,j

r2 S 2x

tanx
1

3rAj

z
14jC,jD 1R,rS 3,

rz
2

1

r
12C,rD G

50. ~10!

We perform numerical calculations for the elliptic equations
using a relaxation method. The constraint equations are not
explicitly solved but they are used as a check of accuracy.
Before proceeding further, we discuss an important property
of the constraint equations@44#. The constraint equations
with an appropriate function multiplied satisfy Cauchy-
Riemann relations. They are obtained from the nontrivial
components of the Bianchi identities¹mG n

m 50. Assuming
that equations forT, R, and C are satisfied, i.e.,G t

t5G u
u

5(G r
r1G j

j)50, we obtain Cauchy-Riemann relations for
G j

r and (G r
r2G j

j) as

]zU2]xV50,

]xU1]zV50, ~11!

where UªjA2gG j
r/sinu, VªrA2gAj(G r

r2G j
j)/(4sinu),

andgªdet(gmn). Then

U5S ,

zD 3 r3e2C~sinAj!2

2Aj
Q1 ,

V5S ,

zD 3r4e2C~sinAj!2

4
Q2 . ~12!

Since U and V satisfy Cauchy-Riemann relations, each of
them satisfies the Laplace equation. Hence in principle, if
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Q150 is satisfied on all boundaries and provided thatQ2
vanishes at any one point, the two constraint equations are
automatically satisfied in all places as long as the elliptic
equations forT,R, andC are solved.

C. Boundary conditions

In order to solve the elliptic equations derived in the pre-
vious section, we must specify the boundary conditions. Let
us first discuss boundary conditions on the symmetry axis of
r 50. The regularity atr 50 of Eqs.~7! and ~8! requires

R5C ~at j50!, ~13!

which determines the boundary condition forR. The axial
symmetry requires that ther derivative of the metric func-
tions vanishes atr 50. However, as long as we use thej
coordinate, the finiteness of the derivative in this coordinate
automatically guarantees regularity becauseT,r}AjT,j .
Hence, we adopt a free boundary condition forT andC. The
values ofT andC at r 50 are evolved in the same way as the
values at an ordinary grid point. The only difference is to use
the one-sided differentiation to evaluate the first-order de-
rivatives with respect toj. The second-order derivatives dis-
appear atj50 from the Laplace operator. Equation~9! at
j50 is trivial from Eq.~13!, while Eq. ~10! reduces to

R,j53C,j1
T,j

T
1r2F12e2R

z2
1C,rS 2,2r

2rz
1

C,r

2 D
1

T,r

2T S ,

rz
1C,rD G ~at j50!. ~14!

We can also show that this equation is guaranteed to be sat-
isfied if R andC are solutions of Eqs.~7! and ~8!. Although
it is not necessary in principle, we use this condition~14! in
addition to Eq.~13! in order to improve the accuracy of the
calculation. We do not solve the evolution equation forR at
the ordinary grid points next to the axis in place of imposing
this supplementary condition.

On the horizon, the Killing vector] t must become null.
Therefore, we have

T50 ~at r5rh!. ~15!

In the present gauge, the horizon is given by a constant ra-
dius, and thus we have

T,j5T,jj50 ~at r5rh!. ~16!

Here we assume that metric functions and their derivatives
are finite on the horizon. With the aid of Eqs.~15! and~16!,
the surface gravity on the horizon is given as

k5e2RT,r ~at r5rh!. ~17!

This condition can be used to impose a Dirichlet boundary
condition forR on the horizon. For this purpose, we rewrite
it as

R5Cuj501 logS T,r

T,ruj50
D ~at r5rh!, ~18!

using Eq.~13!.
Following the line of a standard proof@47#, we can show

that the zeroth law of black hole thermodynamics,]xk50,
is valid, and it guarantees Eq.~9! to be satisfied on the hori-
zon. Assuming the surface gravity is nonzero~nonextremal!,
we find thatT,r must be nonzero on the horizon;T,rÞ0.
Then, from the regularity of Eq.~7! or Eq. ~8! on the hori-
zon, a condition forC,r is derived as

C,r52
,

rhz
~at r5rh!. ~19!

On the other hand, the condition that the expansion is zero
on the horizon gives@46#

~R12C! ,r1
3,

rhz
50 ~at r5rh!, ~20!

which guarantees the constraint equation~10! on the horizon.
In the following numerical calculation, we basically impose
these Neumann boundary conditions on the horizon forR
and C. As a supplementary condition to improve the accu-
racy, we also use Eq.~18!, but we do not use Eq.~17!.
Hence, in our calculation the surface gravity is not given by
hand as a parameter. We discuss this point in more detail at
the end of this subsection.

For the extremal casek50, the boundary conditions are
not fully determined in the present way. Fromk50, R5`
or T,r50 are required on the horizon, and thus the boundary
condition forC is not determined from the regularity on the
horizon. It might be interesting to explore the extremal case
separately, but we do not consider it in this paper.

Israel’s junction condition for the RS braneworld model
gives Kmn52gmn /,, wheregmn and Kmn are the induced
metric and extrinsic curvature on the brane, respectively.
From this condition, we obtain the boundary conditions on
the brane as

]jT

T
5]jR5]jC52

r

2,Aj
~12eR! „at j5~p/2!2

….

~21!

The constraint equation~9! is manifestly satisfied under
these conditions.

We must also specify asymptotic boundary conditions.
For the asymptotic infinity, the boundary conditions to obtain
asymptotically AdS spacetime areT→1 andR,C→0. The
metric functions must smoothly approach these asymptotic
values. In actual numerical calculations, these asymptotic
boundary conditions are imposed at a finite, but sufficiently
far region, and we must check that the solutions are insensi-
tive to the position.

With these boundary conditions, we can solve the elliptic
equations as a boundary value problem. Moreover, these
boundary conditions guarantee the constraint equationQ1 to
be satisfied on all boundaries andQ2 to be satisfied at least
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on the horizon. Hence as we explained, the two constraint
equations are automatically satisfied as long as the elliptic
equations are exactly solved.

It should be noted that all elliptic equations, constraint
equations, and boundary conditions can be rewritten in terms
of nondimensional coordinates$r̂,x%, wherer̂5r/,, with-
out any dimensionful parameters. Then this system of equa-
tions, and hence a black hole solution, is characterized only
by a single parameter

L5,/rh . ~22!

In our numerical calculation, we takerh[1 and change, to
specify this parameter, since we want to fix a coordinate
region where numerical calculations are performed. The
variation of, keepingL fixed corresponds to a rescale of the
length scale as we notice from the metric~1!, which is re-
written as

ds25,2dsL
2~ t̂ ,r̂,x!, ~23!

where dsL
2 is the nondimensional part of the line element

written by $ t̂5t/,,r̂,x%, and its metric function is given by
a black hole solutionT,R, andC with the parameterL. After
specifying a black hole solution by this method, one may
want to transform the solutions to those in the coordinates
whereL is specified by taking,[1 and changingrh . For
this purpose, it is enough to multiply,21 to a length scale in
the coordinates whererh[1 is taken.

A question may arise. Although we say that we useL
5,/rh to specify a solution,rh does not have a clear physi-
cal meaning. One may think that it is more appropriate to
specify the value of the surface gravityk instead ofrh . Here
we should recall the argument given at the end of the pre-
ceding subsection thatr/rh and hencer̂/ r̂h cannot be
changed arbitrarily by using the residual gauge degree of
freedom. If we change the value ofr̂h by using this residual
gauge degrees of freedom, the value ofr̂ at infinity also
scales correspondingly. Then, we will see that the asymptotic
boundary conditionsT→1 andR,C→0 are not satisfied af-
ter the gauge transformation. Hence, for a given solution we
do not have a degree of freedom to change the value ofr̂h
arbitrarily. Thus, if we specify a solution by fixing bothk
and,, we are not allowed to setrh51 any further. On the
contrary, as we wish to setrh51 in the actual numerical
computation, we should not use the condition~17! that speci-
fies the value ofk directly.

III. NUMERICAL EXAMPLES OF SMALL BLACK HOLES

A. Numerical examples

The formulation outlined in the previous section indeed
works well to solve the Einstein equations as a boundary
value problem, using an iterative convergence scheme of the
relaxation method. A simple check of an algorithm is to cal-
culate a very large limit ofL for fixed rh , and compare the

result with the 5D Schwarzschild black hole in isotropic co-
ordinates which is a solution in the small horizon limitL
→` (,→`) taking z/,→1

T~r!5
r22rh

2

r21rh
2

,

R~r!5C~r!5 logS 11
rh

2

r2D . ~24!

In this limit, the tension of the brane vanishes and the back-
ground spacetime is flat. We have used this metric as an
initial guess configuration with which we start the relaxation.
Namely, we first calculated a solution for relatively largeL,
and then proceeded to smallerL by using the result relaxed
for the previous value ofL as the new initial configuration.
Convergences of numerical calculation become worse asL
becomes smaller, and errors of constraint equations also
grow if we keep the same resolution. It becomes in general
more difficult to find solutions as the nonlinear effects of
differential equations grow, and we could not keep the con-
vergence of the calculation forL&1. Thus in this paper we
show only small black holes (L.1), although it is important
to improve our scheme by identifying and removing all nu-
merical instabilities. The number of grid points (j i ,r j ) used
in our calculation is 10031000. The grid pointr j is taken to
be a geometric progressionr j5rh1e(12g j )/(12g). The
parameterse andg are determined by requiring that the ratio
of the last grid resolution to the first one isdrmax/dr1
'2.71 and the asymptotic boundary is set atrmax585. It is
crucial to test the sensitivity of the solutions to the physical
size of the lattice. This will be discussed later~see Fig. 6!.

To orient the reader, we show the result ofT,R, andC for
L515 in Fig. 1 as a typical example. The center of the black
hole is atr 50 andz2,50. The interior of the horizonr
,rh is outside the region of our numerical calculation. The
contours ofT are almost spherical for this value ofL as in the
case of the limitL→` in spite of the nontrivial boundary
conditions on the brane, while the contours ofR andC mani-
festly deviate from spherical shape.

In Fig. 2, the solution forL530 is displayed in the polar
coordinates that are more appropriate to see the angular de-
pendence of the metric functions. Figure 3 displays the re-
sults forL510 in the polar coordinates. The deviations from
spherical shape forL510 are enhanced more than those for
L530. We have performed numerical calculations for the
parameter regionL53;500. The results for someL are
listed in Table I.

To consider the shape of the small localized black hole in
the bulk, we calculated geometrical quantities for the nu-
merically obtained black hole solutions. The area of the
black hole horizon is given by

A552rh
3E dVE

0

(p/2)2

dj
sin2Aj

2Aj
S ,

zD 3

eR12C. ~25!
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Here the factor 2 is due toZ2 symmetry. The proper area of
the intersection between the horizon and the brane is given
by

A454prh
2e2C ~x5p/2!. ~26!

Figure 4 shows the ratio of a mean radius in four-
dimensionAA4 ~on the brane! to that in five-dimensionA5

1/3.
The figure indicates that the black hole tends to flatten as its
horizon radius increases. This geometrical behavior is ex-
pected from the AdS geometry of whole spacetime. The so-
called warp factor,z21 of the AdS geometry~1! will in
general cause the localized black hole to be flattened, and
this effect becomes significant when the horizon radius is
large. In fact, the EHM solution exhibits a similar behavior
to Fig. 4.

B. Constraint equations and checks of calculation

In this section we discuss the validity of our numerical
calculations. We have calculated the constraint equations for
each numerical solution. Averaged absolute errors of the el-
liptic equations and the constraint equations are listed in
Table I. In the table, we have introduced a normN(j,r) of

the constraint equations since we need appropriate references
to compare with the violations of constraint equations. The
norm is defined by

N~j,r!5(
k

un(k)~j,r!u, ~27!

wheren(k) represents the terms inQ1 or Q2 at (j,r). The
comparison between this norm and the violation of the con-
straint equation gives a degree of cancellation between dif-
ferent terms. We see in Table I that averaged constraint vio-
lations against averaged norms are small, and thus the
constraint equations appear to be well satisfied. Moreover by
using this norm, we can obtain relative accuracies of the
constraint equations,uQ1u/N1 and uQ2u/N2. Figure 5 shows
that the absolute errors of the constraint equations,uQ1u and
uQ2u, are observed mainly around the origin of polar coordi-
nates and near the horizon where the elliptic equations have
terms whose coefficients behave like 1/j→` or 1/T→`. On
the other hand, the figure represents that the relative accuracy
around the horizon is not so bad, although the relative accu-
racy becomes worse near the axis. This violation of the con-
straint equations is a general feature of the present calcula-
tions and it becomes larger asL becomes smaller. The lack of
accuracy near the axis is a common problem in axisymmetric
problems.

FIG. 1. An illustration of the metric functionsT,R, andC for L515 in the coordinates$r ,z%. This is a typical example of our numerical
solutions for small black holes (L*5). In these figures the center of the black hole is placed at the bottom left corner (r 50 andz2,
50), and the brane is atz2,50. The numerical calculation has been performed in the polar coordinates$r,j%, and hence the inner region
of the black holer,rh is outside the area of our computation.
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We have also checked second-order convergences of the
thermodynamic quantities forL520 keepingrmax585. As a
function ofdj, we confirmed the quadratic fits fork andA5.
The similar quadratic fit is possible for the variation ofr
resolution, in which we need to change the lattice resolution
keeping the ratiodrmax/dr1 fixed ('2.71). The numbers of
grid points (j i ,r j ) used in these checks are (80–200)
31000 fordj variation, and 1003(750–2000) fordr varia-
tion, which correspond to dj50.01–0.03 and dr
50.02–0.07, respectively. Note that the absolute errors de-
crease as the lattice resolutions increase. However, clear
second-order convergence has not been observed because we
have not used equal grid spacing forr j . If we use equal grid
spacing, second-order convergence is actually observed. We
have also checked the insensitivity of our numerical solu-
tions on the finite position of the asymptotic boundary. To
confirm it, we vary the positionrmax for L510 andL520,
and check the robustness of thermodynamic quantities. For
each variation ofrmax, we have changed the grid resolution
for r keeping the ratiodrmax/dr1'2.71 withdr1'0.05. The
thermodynamic quantities are stable for each value ofrmax.
Figure 6 shows a result for a nondimensional combination.
One sees that the combination of thermodynamic quantities
is stable and the variation is no more than 1% for the pa-
rameters.

IV. SUMMARY

Black hole solutions that represent a black hole localized
on the brane in the Randall-Sundrum infinite braneworld
model have not been found with appropriate boundary con-
ditions in the literature. We have explored this problem in
this paper. We have performed the numerical calculations
and found nontrivial localized black hole solutions whose
horizon radii rh are small compared to the bulk curvature
scale,. More precisely,the small localized black hole solu-
tions are approximately constructed by numerical calcula-
tions under appropriate boundary conditions. From the nu-
merically obtained solutions, we could observe the transition
of the shape of the small localized black hole in the bulk
~Fig. 4!. The black hole tends to flatten as its horizon radius
increases. This is expected due to the nature of the AdS
geometry, and is also observed in the EHM solution of a
localized black hole in the 4D braneworld@39#. Although the
EHM solution is the solution in lower dimensions, it is in-
teresting to compare our solution with it in more details.

Although the method we have developed works well for
the small localized black holes, we could not succeed in
finding black hole solutions with large horizon radius. The
lack of convergence in the relaxation scheme is due to the
appearance of unstable modes. For example, an unstable
mode that appears near the axis is a common problem in

FIG. 2. An illustration of the solution forL530 in polar coordinates$r,x%.
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TABLE I. Table summarizing the data of numerical calculations for several values ofL5,/rh . In the
calculations we have varied, keeping the horizon radiusrh51. Thus it should be noted that the dimen-
sionful parameters, i.e., surface gravityk, 5D areaA5, and 4D areaA4, must be rescaled for comparison, as
we have explained below Eq.~22!. In the table,L5` represents the 5D Schwarzschild black hole, which is
a solution in this limit.̂ uQ1u&, ^uQ2u&, and^uTRCu& are averaged violations of the constraint equations and
the elliptic equations.̂uTRCu& is the mean absolute value for the equations ofT, R, andC with equal weight
for each grid point. In taking these averages, the first 5% of lattice points inj and the region near the horizon
r,2rh are excluded since they receive unphysical enhancements of errors due to singular terms. We intro-
duce^N1& and^N2& as the averaged value ofN @Eq. ~27!# for Q1 andQ2, respectively, in the restricted grid
region mentioned above. The number of grid points (j i ,r j ) used in the calculations presented in this paper
is 10031000. The coordinate position of grid pointr j is taken to be a geometric progressionr j5rh1e(1
2g j )/(12g). The grid spaces used in the calculation aredj50.025, dr150.049, drmax/dr152.714. The
position of the asymptotic boundary is set atrmax585.

L ^uTRCu& ^uQ1u& ^uQ2u& (^N1&,^N2&) k A5 A4

5 5.931024 6.831024 6.831024 (2.231022,3.731022) 0.37 129 53
10 1.331024 2.231024 1.631024 (1.231022,2.731022) 0.41 150 53
15 9.731025 2.531024 1.431024 (9.231023,2.531022) 0.43 155 53
30 7.431025 1.731024 9.331025 (5.831023,2.431022) 0.46 161 52
50 6.331025 1.231024 6.231025 (4.831023,2.431022) 0.47 160 51
100 5.031025 6.931025 5.631025 (4.131023,2.331022) 0.48 158 51
500 9.831026 1.431025 1.731025 (3.631023,2.331022) 0.50 158 50

L5` 0.50 158 50

FIG. 3. An illustration of the metric functionsT,R, andC for L510 in the coordinates$r,x%.
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axisymmetric code~see, e.g.,@48#!. In particular, the first
terms in Eqs.~7! and~8! that have the factor 1/r 2 give severe
contributions near the axis, and they invoke numerical insta-
bility. The same problem appeared in the calculation of a

relativistic star in the braneworld model@44#. Thus improve-
ment of the numerical scheme and formulation to avoid this
instability is an important issue. It may be worth pointing out
that since we do not have any uniqueness theorem in the

FIG. 4. An illustration ofAA4/A5
1/3. This plot shows a degree of

deformation of a black hole. One sees that asL decreases the ratio
of a mean radius in four-dimensionA4

1/2 ~on the brane! to that in
five-dimensionA5

1/3 increases. It indicates that the black hole tends
to flatten as its horizon radius increases. The dashed line shows the
same quantity for the 5D Schwarzschild black hole. Note thatL is
expressed in natural logarithm.

FIG. 5. An illustration of the constraint equations forL515. The figures that plot the absolute values of two constraint equations,uQ1u
and uQ2u, show the absolute errors of the constraint equations. The other two figures plottinguQ1(r,x)u/N1(r,x) and uQ2(r,x)u/N2(r,x)
show the relative accuracy of the constraint equations sinceN1 and N2 are norms of respective constraint equations~see Table I!. As
expected, the absolute errors of the constraint equations are observed mainly near the axis of polar coordinates and around the horizon.
However, the relative accuracy is not significantly low around the horizon, but it is worse near the axis and in the asymptotic region.

FIG. 6. A plot showing the sensitivity of the numerical solutions
to the position of asymptotic boundary. The calculations are per-
formed forL510 andL520. The position of asymptotic boundary
rmax is changed fromrmax550 tormax5115 keeping the ratio of the
resolution fixed atdrmax/dr1'2.71 withdr1'0.05. We see that the
variation of the thermodynamic quantity is no more than 1%, and is
stable for this parameter range ofrmax.
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context of the braneworld@50,49#, there is a possibility of
finding a sequence of solutions other than that found in this
paper if we start with a completely different initial guess.

It is worthwhile to point out that the boundary conditions
that we have imposed do nota priori guarantee the absence
of naked singularities in the bulk or on the horizon. If any
solution obtained in our formulation cannot avoid a naked
singularity in the bulk or on the horizon, it means that there
is no physically acceptable static black hole in the RS infinite
braneworld. Such a possibility was pointed out for large lo-
calized black holes@42,43#.

As a direction of future work, it is crucially important to
find large black hole solutions if they exist@42,43#, and it
needs further developments of technique and investigation. It
is also interesting to apply this method to find the black holes
localized on the TeV brane@5#. The stabilities of a higher-
dimensional black hole including our solution are also im-

portant. We hope the method used in this paper will become
the basis for further studies on black holes in higher dimen-
sions.
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