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Small localized black holes in a braneworld: Formulation and numerical method
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No realistic black holes localized on a 3-brane in the Randall-Sundrum infinite braneworld have been found
so far. The problem of finding a static black hole solution is reduced to a boundary value problem. We solve
it by means of a numerical method, and show numerical examples of a localized black hole whose horizon
radius is small compared to the bulk curvature scale. The sequence of small localized black holes exhibits a
smooth transition from a five-dimensional Schwarzschild black hole, which is a solution in the limit of small
horizon radius. The localized black hole tends to flatten as its horizon radius increases. However, it becomes
difficult to find black hole solutions as its horizon radius increases.
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[. INTRODUCTION such a small black hole, the former sequence is expected to
be stable. For RS models, since the 3-brane has tension, it is

Higher-dimensional black holes have been considered fomore difficult to find black hole solutions. Trivial black
a long time as purely theoretical applications motivated bystring solution is allowed also in these models, and it be-
higher-dimensional theories, such as string theory. Howevetomes unstable in the same way. There are many discussions
recent developments in the scenario of large extra dimenabout black holes in this model and some black hole solu-
sions[1] have aroused new interest in such black holes. Irtions have been considered by several authi®8-2g. A
the braneworld scenario, an interesting possibility of blackstrategy to construct a black hole solution is to assume an
hole production at a collider was pointed ¢@t3] (see, e.g., induced metric on the 3-brane idtial data, and extend it to
[4] and references therginThere are other types of brane- the bulk analytically or numerically. This method generally
world models proposed by Randall and Sundr®®) [5,6]. results in a naked singularity in the bulk since there is no
In these models, the geometry warped in the direction of aguarantee that the induced metric assumed as a boundary
extra dimension is used to explain the hierarchy between theondition is compatible with a regular geometry. If we ran-
TeV scale and the Planck scale, and to realize fourdomly specify the boundary metric on the 3-brane, almost all
dimensional gravity effectively on the 3-brane. Also in the solutions develop a naked singularity. After all, no realistic
context of RS models, higher-dimensional black holes maylack hole solutions which are stable and have no naked
play an important role. These so-called braneworld scenariosingularity have been found so far, and finding them is an
provide new and interesting situations to investigate higherinteresting open question of nonlinear gravity in the brane-
dimensional black holes. world.

In the model of large extra dimensions, a physically Successful recovery mechanism of 4D gravity on the
meaningful sequence of black hole solutions will be obtained-brane[29—-37 suggests the existence of black holes in the
as a slight modification of the higher-dimensional Kerr blackRS infinite braneworld6]. The shape of the black holes is
hole [7] (or more simply the Schwarzschild black hole conjectured based on the Gregory-Laflamme instalifig}.
[8—1Q)) if the horizon radius is sufficiently small compared It was argued that an unstable black string will be pinched
to the extension of extra dimensions and the self-gravity duénto many black holes. In addition to black holes in the bulk,
to periodic boundary is weak. As another sequence, there athere will be a black hole that is localized on the 3-brane. We
the black string solutions. A black string is in general un-can imagine this as a black hole bound to a domain wall if
stable to linear perturbations with long wavelength in thethe 3-brane is realized by a domain wgB]. An exact so-
direction along the string, which is called Gregory-Laflammelution representing a localized black hole is known in the 4D
instability [11]. (A stability analysis of black strings is also braneworld model, which we call in this paper the Emparan-
found in Ref.[12].) Therefore, a black string is unstable Horowitz-Myers (EHM) solution[39]. However the corre-
when the horizon radius of the black string is sufficiently sponding solution in the original 5D braneworld model has
small compared to the extension of the extra dimension. Fomnot been discovered. While the localization of a black hole

was motivated by the classical instability of black string, the
anticipated dynamics of pinching off the horizon is ques-

*Electronic address: kudoh@yukawa.kyoto-u.ac.jp tioned by Horowitz and Maed&0]. Recently, Wiseman dis-
"Electronic address: tanaka@yukawa.kyoto-u.ac.jp covered nonuniform black strings by numerical calculation
*Electronic address: takashi@yukawa.kyoto-u.ac.jp [41]. The obtained solutions are likely to be unstable, but
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they are suggestive of a missing link between the localized E=x2,
black hole and the black string. On the other hand, based on .
an extensive use of the AdS/CFT correspondence, there &€ more convenient. Then, we have
another discussion anticipating the absence of static localized p?
black holeg42,43. dr?+dz?=dp?+ ——dé&2. ©)

The present paper explores the problem of black holes in 4
the RS infinite braneworld. We consider a numerical con-The angular coordinaté is useful to treat the coordinate
struction of a black hole solution in this model. The methOdsingmarity atX:0 numerica”y since the Singu|arity be-
we use in this paper is based on a scheme developed Rmes milder iné coordinate as we will see latg45].
Wiseman44]. Our method does not require any assumptions For numerical calculations, it is convenient if the bound-
for the induced metric on the 3-brane. We solve Einsteiraries are located on lines where one of the coordinates is
equations numerically under the boundary conditions detereonstant. This can be achieved in general by using the re-
mined by physical requirements. We will find small black sidual gauge degrees of freedom. The metric f@tjrhas the
hole solutions, whose horizon radius is smaller than the Adgauge degrees of freedom of conformal transformations in
curvature radius, although large black hole solutions havéhe two-dimensional space spanned ibyand z For our
not been discovered. present purpose, it is convenient to use the conformal polar

In the next section, we explain our method formulatingcoordinates , x), where{=Ilog p. Using these coordinates,
the problem to be suitable for numerical calculation, and theve havedr?+ dz?= p?(dZ2+dx?). For the conformal trans-
boundary conditions are also discussed. The examples of niBrmation ' =f({,x) and x'=9({,x), f and g satisfy the
merical solutions are shown in Sec. lll. Section IV is devotedCauchy-Riemann relations. With a functigd(, x), we have

0 & summary. dZ'2+dx 2= (£, x)(dg>+dx?). 4

Il. FORMULATION AS A BOUNDARY VALUE PROBLEM We can use these conformal degrees of freedom to deform
the shape of the boundaries. From the Cauchy-Riemann re-
lations,g (and alsof) satisfies Laplace equation, and thgs

To obtain black hole solutions in the RS infinite brane-is Comp|ete|y determined by Specifying its boundary condi-
world model, it is crucial to formulate the problem as atjons. Suppose we sgt=0 on the axis an@: /2 on the
boundary value problem without assuming any artificialprane, and impose Neumann boundary conditions on the ho-
bOUndary conditions. We follow and develop the numericalrizon boundary and the asymptotic boundary_ The transfor-
method developed in Ref44] (see als¢41]). What we want  mationf is determined by integrating the Cauchy-Riemann
to find is a static black hole solution that is localized on there|ations. The Neumann conditions for on the horizon
brane. For S|mpIICIty, we further restrict our attention to theboundary and on the asymptotic boundary guarantee the con-
configuration with 5D axial symmetr4D spherical symme-  stancy off on these two boundaries. In this manner, we can
try). Under the static and axisymmetric assumption, the metgenerally find a conformal transformation that transforms

ric depends only on the radial coordinat@nd the coordi-  each boundary to a constant coordinate line. Therefore, the
natez in the direction of the extra dimension. Then, without location of the event horizon can be transformed to be

loss of generality, the metric can be written as

A. Conformal transformation

P| horizon™ CONSE py, , 6)

2
ds2:€_[_T2dt2+ e?R(dr2+dz2) +r2e2°d0?], (1) and the brane can be placedzat¢ [30]. Here we note that
22 f is uniquely determined up to adding a constant, and hence,
o o ) ) the difference of the value af’ between two points cannot
whered2?=d§*+sir’éd¢? represents the line element on a pe changed arbitrarily. We therefore do not have a degree of
unit 2-sphere. The cosmological constant in the bulk is refeedom to change the ratje/p,, for a given solution.
lated to the bulk curvature lengthby A = —6/¢2. If we set
T=1 andRzCzO, this metric becomes the AdS metric in B. Elliptic equations and constraint equations
the Poincareoordinates. Since we consider a localized black

hole, polar coordinates Let us consider the elliptic equations and constraint equa-

tions that we solve. From the five dimensional vacuum Ein-

r=psiny, stein equationsg’;:R’,f—%Ag;:O, we obtain an elliptic
equation for each metric component. Respective equations
z={+pcosy, (2 are given fromGy, (Gi—G~—Gi+2G)) andGy as

4T +A€2 | MXT e th2r+2C o7 (1 2¢ c LT
o T [N AL
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A2

AR +—|1+ 2R+4XT'§( t +r+2C)+2T"’<€+ +4XC’§ t +2r+ C)
= - e coty+ - — = coty+ —
r2 22 6 p?T XT 77X T \pz 7 p2 XT 7 T X
2 4¢
HC | =+ +C,), (7)
s T AL A ) 2T T - Do Lve | 2 acops T hane
= > ~ 5 e T oyt o +2xCo| =57 C0 2 coty+ —-+4xC,¢
1 5¢
+C,| 5= 2;72C, ), ®

where a comma means a partial derivative, Andaerr a§=ﬁ§+pflap+ 2p*2(2§(9§+ dg) is the Laplace operator. The first
terms in the equations fd& andC have the factor that behavesras’= y ~2 wheny— 0. Introduction of¢ changes this severe

behavior and it makes the terms more tractable in numerical calculation. Constraint equations are obtained, respectively, from
G¢ and Gi-Gh+GE+2G7) as

ZeZR

®1:=§T gg;

Z2

1
:§|: R,gT,p_T,§p+ T,§( R’p'f‘ ;)

T| éR ¢ 2C 1,3 2¢C C X 2¢éC
+ g € P ;—'_E g vép P tanX+ § €
X 3ryE
R,p(—tanx+ 5 +2§c,§”—o, 9
1/[¢%eR
NEETLC P
AT 2T 2x  3riE 3¢ 6 |Al2
= 2 + 2 1+tanx+ - +2§(2C =R | +T, EJrZC,erR’p +T ; 1——6 e
1-e?R"9 gec,, 12¢,(1 r 60 2
+ LS S { R +—\/E+§C§ +C (———+C )
r2 p? p? |3 tany z : P\lpz p P
2R 2 3r 3¢ 1
Sk’ [ S @+4gc§ +Rp———+ch)
p? \tany z ' P\pz p '
=0. (10)
|
We perform numerical calculations for the elliptic equations I U+ 3, V=0, (11)

using a relaxation method. The constraint equations are not
explicitly solved but they are used as a check of accuracywhere u:=§\/—_ggf§’/sin 6, Vi=p \/—_g\/E(gg—gg)/MsinG),
Before proceeding further, we discuss an important properthndg:det(gw), Then

of the constraint equationgt4]. The constraint equations

with an appropriate function multiplied satisfy Cauchy- ¢\ 3 p3eC(siny£)2
: ; : - p-e”(siny¢)
Riemann relations. They are obtained from the nontrivial U= Zl T m O,
components of the Bianchi identitieg,G*,=0. Assuming 2\¢
that equations fofT, R, and C are satisfied, i.e.g{;gz 13462 (sinyE)?
:(g§+ gg)zo, we obtain Cauchy-Riemann relations for :(_> p 0,. (12
G¢ and G/—G) as z 4

Sincel/ and V satisfy Cauchy-Riemann relations, each of
dU—3, V=0, them satisfies the Laplace equation. Hence in principle, if

024035-3
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®,=0 is satisfied on all boundaries and provided tBat T
vanishes at any one point, the two constraint equations are R=C|§=0+Iog(%
automatically satisfied in all places as long as the elliptic p1E=0
equations forT,R, andC are solved. using Eq.(13).

Following the line of a standard prop#7], we can show
C. Boundary conditions that the zeroth law of black hole thermodynamigsk =0,
is valid, and it guarantees E(P) to be satisfied on the hori-
gon. Assuming the surface gravity is nonzénonextremal
e find thatT , must be nonzero on the horizom;,#0.
hen, from the regularity of Eq.7) or Eq. (8) on the hori-
zon, a condition foiC , is derived as

(at P:Ph)1 (18)

In order to solve the elliptic equations derived in the pre-
vious section, we must specify the boundary conditions. Le
us first discuss boundary conditions on the symmetry axis o
r=0. The regularity at =0 of Egs.(7) and(8) requires

R=C (at £=0), (13 ¢

: : iy , C,=—— (at p=pp). 19
which determines the boundary condition fer The axial P PhZ (@t p=pn) (19
symmetry requires that the derivative of the metric func- N o
tions vanishes at=0. However, as long as we use tfe On the other hand, the condition that the expansion is zero
coordinate, the finiteness of the derivative in this coordinaté®n the horizon give$46]
automatically guarantees regularity becauBgo \/ET, £ 3¢
Hence, we adopt a free boundary condition ToandC. The (R+2C) ,+—=0 (at p=pp), (20)
values ofT andC atr =0 are evolved in the same way as the pnZ
values at an ordinary grid point. The only difference is to use | . . .
the one-sided differentiation to evaluate the first-order deWhICh guarantees the constraint equaﬁm) on the hor!zon.
rivatives with respect tg. The second-order derivatives dis- In the following numerical calculation, we basically impose

- . these Neumann boundary conditions on the horizonRor
?ip(;% ?Sr f:it\g,i;ofrgr?quth?llé)a?,:,?ﬁE Cépe(r%?r} eiﬂlézg(ﬁt?)) at and C. As a supplementary condition to improve the accu-
q-(29, q racy, we also use Eq18), but we do not use Eql17).

Hence, in our calculation the surface gravity is not given by
hand as a parameter. We discuss this point in more detail at
the end of this subsection.
For the extremal case=0, the boundary conditions are
T, ¢ not fully determined in the present way. Fraas=0, R=«
+ 2T p_zJ“C'P orT ,=0 are required on the horizon, and thus the boundary
condition forC is not determined from the regularity on the

We can also show that this equation is guaranteed to be sdiorizon. It might be interesting 'to e>'<pllore .the extremal case
isfied if R and C are solutions of Eqg7) and (8). Although separate?Iy,_ but we do not consider it in this paper.
it is not necessary in principle, we use this conditiad) in _ Israel’s junction condition for the RS branewo.rld model
addition to Eq.(13) in order to improve the accuracy of the 9V€SK,,=—v,,/¢, wherey,, andK,,, are the induced
calculation. We do not solve the evolution equationfoat ~ Metric and extrinsic curvature on the brane, respectively.
the ordinary grid points next to the axis in place of imposingFrom this condition, we obtain the boundary conditions on
this supplementary condition. the brane as

On the horizon, the Killing vectod; must become null.

Te
=

R’§:3C’§+ +p2

2

1-eR (2e—p C
p

z

(até=0). (14

Therefore, we have Il o p R _ 2
- =dR=09,C= 26\/2(1 e") (at &=(m/2)°).
T=0 (at p=pn). (19 (21)
In the present gauge, the horizon is given by a constant rafhe constraint equatiori9) is manifestly satisfied under
dius, and thus we have these conditions.
We must also specify asymptotic boundary conditions.
T~=Tg=0 (at p=pp). (16) For the asymptotic infinity, the boundary conditions to obtain

asymptotically AdS spacetime afie—~1 andR,C—0. The
Here we assume that metric functions and their derivativesnetric functions must smoothly approach these asymptotic
are finite on the horizon. With the aid of Eq45) and(16), values. In actual numerical calculations, these asymptotic

the surface gravity on the horizon is given as boundary conditions are imposed at a finite, but sufficiently
far region, and we must check that the solutions are insensi-
k=e RT , (at p=py). (17)  tive to the position.

With these boundary conditions, we can solve the elliptic
This condition can be used to impose a Dirichlet boundaryequations as a boundary value problem. Moreover, these
condition forR on the horizon. For this purpose, we rewrite boundary conditions guarantee the constraint equaipmo
it as be satisfied on all boundaries afig to be satisfied at least

024035-4
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on the horizon. Hence as we explained, the two constraintesult with the 5D Schwarzschild black hole in isotropic co-
equations are automatically satisfied as long as the elliptiordinates which is a solution in the small horizon linhit

equations are exactly solved. —o ({—x) takingz/€—1
It should be noted that all elliptic equations, constraint
equations, and boundary conditions can be rewritten in terms p? —ph
of nondimensional coordinatdp, x}, wherep=p/{, with- Tp)="5— P2+ pl
out any dimensionful parameters. Then this system of equa-
tions, and hence a black hole solution, is characterized only
by a single parameter pﬁ
R(p)=C(p)=|09( 1+ —2)- (24)
L=4/py. (22 p

In our numerical calculation, we takg=1 and changé to In this limit, the tension of the brane vanishes and the back-
specify this parameter, since we want to fix a coordinategground spacetime is flat. We have used this metric as an
region where numerical calculations are performed. Thenitial guess configuration with which we start the relaxation.
variation of¢ keepingL fixed corresponds to a rescale of the Namely, we first calculated a solution for relatively laige
length scale as we notice from the met¢l, which is re-  and then proceeded to smalleby using the result relaxed
written as for the previous value of as the new initial configuration.
Convergences of numerical calculation become worse as
2 A~ becomes smaller, and errors of constraint equations also
ds’=¢ dﬁ% tLpox) 23 grow if we keep the same resolution. It becomes in general
more difficult to find solutions as the nonlinear effects of
where ds’ is the nondimensional part of the line element differential equations grow, and we could not keep the con-
written by{f:t/€,,3,X}, and its metric function is given by vergence of the calculation far<1. Thus in this paper we
a black hole solutiof,R, andC with the parametek. After ~ show only small black holed (>1), although it is important
specifying a black hole solution by this method, one mayto improve our scheme by identifying and removing all nu-
want to transform the solutions to those in the coordinatesnerical instabilities. The number of grid points; (p;) used
wherelL is specified by takingg=1 and changingy,. For  in our calculation is 108 1000. The grid poinp; is taken to
this purpose, it is enough to multiply * to a length scale in  be a geometric progressign=pn+ e(1— yJ)/(l v). The
the coordinates wherg,=1 is taken. parameterg andy are determined by requiring that the ratio
A question may arise. Although we say that we wse of the last grid resolution to the first one 8pya./dp1
={/p, to specify a solutionp,, does not have a clear physi- ~2.71 and the asymptotic boundary is sepgi—385. It is
cal meaning. One may think that it is more appropriate tocrucial to test the sensitivity of the solutions to the physical
specify the value of the surface gravityinstead ofp;,. Here  size of the lattice. This will be discussed lateee Fig. 6.
we should recall the argument given at the end of the pre- To orient the reader, we show the resulfloR, andC for
ceding subsection thap/p, and hencep/p, cannot be L=15 in Fig. 1 as a typical example. The center of the black
changed arbitrarily by using the residual gauge degree dfole is atr=0 andz—€=0. The interior of the horizop
freedom. If we change the value piﬁ by using this residual <py, is outside the region of our numerical calculation. The

- L contours ofT are almost spherical for this value lofas in the
gauge degrees of freedom, the valuepofat infinity also

. . .case of the limitL—o< in spite of the nontrivial boundary
scales correspondingly. Then, we will see that the asymptoticitions on the brane, while the contoursRdndC mani-
boundary condition§ —1 andR,C—0 are not satisfied af- festly deviate from spherical shape.

ter the gauge transformation. Hence, for a given solution we | Fig. 2, the solution fot. =30 is displayed in the polar

do not have a degree of freedom to change the valye,of coordinates that are more appropriate to see the angular de-
arbitrarily. Thus, if we specify a solution by fixing both  pendence of the metric functions. Figure 3 displays the re-
and ¢, we are not allowed to set,=1 any further. On the sults forL =10 in the polar coordinates. The deviations from
contrary, as we wish to sgt,=1 in the actual numerical spherical shape fdr=10 are enhanced more than those for
computation, we should not use the condit{&f) that speci- | =30. We have performed numerical calculations for the

fies the value of directly. parameter regior=3~500. The results for some are
listed in Table I.
Il NUMERICAL EXAMPLES OF SMALL BLACK HOLES To consider the shape of the small Iocallzgd black hole in
the bulk, we calculated geometrical quantities for the nu-
A. Numerical examples merically obtained black hole solutions. The area of the

The formulation outlined in the previous section indeedP!@ck hole horizon is given by
works well to solve the Einstein equations as a boundary

value problem, using an iterative convergence scheme of the ) 2 JE [ €)3
relaxation method. A simple check of an algorithm is to cal- A5=2pﬁJ dQJ(w/Z) ngI f(_) eRt2C (25
culate a very large limit ot for fixed py,, and compare the 2V \z
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FIG. 1. An illustration of the metric function§,R, andC for L =15 in the coordinate&,z}. This is a typical example of our numerical
solutions for small black holesL&5). In these figures the center of the black hole is placed at the bottom left cornér &ndz—¢

=0), and the brane is at-¢=0. The numerical calculation has been performed in the polar coordifjat&s and hence the inner region
of the black holep<py, is outside the area of our computation.

Here the factor 2 is due td, symmetry. The proper area of the constraint equations since we need appropriate references
the intersection between the horizon and the brane is givet® compare with the violations of constraint equations. The
by norm is defined by

Ay=4mp2e®C (y=ml2). (26) N(é,/o)=2k InM(&,p)], 27

Figure 4 shows the ratio of a mean radius in four-wheren® represents the terms i@, or 0, at (£,p). The
dimension\/A—4 (on the brangto that in five—dimensioﬂ\é’s. comparison t_)etwgen this norm and the wolatlon of the con-
The figure indicates that the black hole tends to flatten as it?tralntttequatlc\)lc glves.a_?etﬂrefatﬁf tcancellatlgn bet;/ve'e? d.'f'
horizon radius increases. This geometrical behavior is e g{ii?]s ez;gn:;.nsteasveeerzige da ngrmsaa?gegerlr?aell C;;)r?j rt?]ISS V;ﬁ-e
Egﬁ;%dvargrm gzitggi_glegfmte;;y :;;V hﬂg;gﬁ;ﬂ”\:ﬁ" 'Ii'rr:e SOconstraint equations appear to be well satisfied. Moreover by

P ) 9 using this norm, we can obtain relative accuracies of the
general cause the localized black hole to be flattened, an&instraint equationd®,|/N, and|©,|/N,. Figure 5 shows
this effect becomes significa}nt whe.n.the hpri;on radiug i%hat the absolute errors of the constraint equatipfig| and
Iargg. In fact, the EHM solution exhibits a similar behavior 1@,|, are observed mainly around the origin of polar coordi-
to Fig. 4. nates and near the horizon where the elliptic equations have

terms whose coefficients behave lik&4fo or 1/T—o. On
B. Constraint equations and checks of calculation the other hand, the figure represents that the relative accuracy

. . . . __around the horizon is not so bad, although the relative accu-
In this section we discuss the validity of our numerical zcy pecomes worse near the axis. This violation of the con-
calculations. We have calculated the constraint equations fafiraint equations is a general feature of the present calcula-

each numerical solution. Averaged absolute errors of the ekions and it becomes larger Bdbecomes smaller. The lack of

liptic equations and the constraint equations are listed imccuracy near the axis is a common problem in axisymmetric
Table I. In the table, we have introduced a ndN(¢,p) of  problems.

024035-6
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FIG. 2. An illustration of the solution fot. =30 in polar coordinate$p, x}.

We have also checked second-order convergences of the IV. SUMMARY
thermodynamic quantities fdr=20 keepingp,.,=85. As a
function of 6¢, we confirmed the quadratic fits farandAs.
The similar quadratic fit is possible for the variation of
resolution, in which we need to change the lattice resolutio
keeping the ratiaSpmay/dp; fixed (=2.71). The numbers of
grid points €;,p;) used in these checks are (80-200)
X 1000 for 6¢ variation, and 108 (750-2000) forsp varia-
tion, which correspond to §¢=0.01-0.03 and d&p
=0.02-0.07, respectively. Note that the absolute errors d
crease as the lattice resolutions increase. However, cl
second-order convergence has not been observed becau

Black hole solutions that represent a black hole localized
on the brane in the Randall-Sundrum infinite braneworld
model have not been found with appropriate boundary con-
"Yitions in the literature. We have explored this problem in
this paper. We have performed the numerical calculations
and found nontrivial localized black hole solutions whose
horizon radii p;, are small compared to the bulk curvature
scale¢. More preciselythe small localized black hole solu-
Sions are approximately constructed by numerical calcula-
€8bns under appropriate boundary conditiorsrom the nu-

h d | arid ) i | _dseﬁﬁ@rically obtained solutions, we could observe the transition
ave not used equal gid spacing fqc. If we use equal gn of the shape of the small localized black hole in the bulk

spacing, second-order convergence 1s actually ob;erved. W&ig. 4). The black hole tends to flatten as its horizon radius
have also checked the insensitivity of our numerical SO'“‘mcreases This is expected due to the nature of the AdS
tions on the finite position of the asymptotic boundary. Togeometry, and is also observed in the EHM solution of a

confirm it, we vary the positiopmay for L=10 andL=20,  |gcalized black hole in the 4D branewoflag]. Although the

and check the robustness of thermodynamic quantities. FqtHm solution is the solution in lower dimensions, it is in-
each variation op,ay, We have changed the grid resolution teresting to compare our solution with it in more details.

for p keeping the ratidSp a4/ 5p1~2.71 with p,~0.05. The Although the method we have developed works well for
thermodynamic quantities are stable for each valup,@f.  the small localized black holes, we could not succeed in
Figure 6 shows a result for a nondimensional combinationfinding black hole solutions with large horizon radius. The
One sees that the combination of thermodynamic quantitiekck of convergence in the relaxation scheme is due to the
is stable and the variation is no more than 1% for the paappearance of unstable modes. For example, an unstable
rameters. mode that appears near the axis is a common problem in
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FIG. 3. An illustration of the metric function$,R, andC for L =10 in the coordinate$p, x}.

TABLE |. Table summarizing the data of numerical calculations for several valués=df/p;,. In the
calculations we have variefl keeping the horizon radius,=1. Thus it should be noted that the dimen-
sionful parameters, i.e., surface gravity 5D areaAs, and 4D area\,, must be rescaled for comparison, as
we have explained below EQ2). In the tablel =« represents the 5D Schwarzschild black hole, which is
a solution in this limit{|®,]), {|®,|), and(|TRC) are averaged violations of the constraint equations and
the elliptic equations{| TRC) is the mean absolute value for the equation3,d®, andC with equal weight
for each grid point. In taking these averages, the first 5% of lattice poigtsird the region near the horizon
p<2py are excluded since they receive unphysical enhancements of errors due to singular terms. We intro-
duce(N;) and(N,) as the averaged value Nf[Eq. (27)] for ®, and®,, respectively, in the restricted grid
region mentioned above. The number of grid poirgs 4;) used in the calculations presented in this paper
is 100<1000. The coordinate position of grid poipt is taken to be a geometric progressign- p,+ €(1
—v1)/(1—v). The grid spaces used in the calculation &ée=0.025, 5p;=0.049, 8pmax/Sp1=2.714. The
position of the asymptotic boundary is setpgt,,=85.

L <|TRC1> <|®1|> <|®2|> ((N1),(Np)) K As Ag
5 59104  6.8x10°% 6.8x10* (2.2x1023.7x10% 037 129 53
10 13104 22x10%  1.6x10% (1.2x10°2,2.7x10% 041 150 53
15 9.7x10°%  25x10°* 1.4x10%  (9.2x10°3,25x10% 043 155 53
30 7.4<10°°  1.7x10°%  9.3x10°°  (5.8x10°%2.4x107%)  0.46 161 52
50 6.3x10°°  1.2x10°%  6.2x10°°  (4.8x10°%,24x10°% 047 160 51
100 50<10°° 6.9x10° 5.6x10° (4.1x10°%23x10?% 048 158 51
500 9.8<10°%  1.4x10° 1.7x10° (3.6x10°%23x10% 050 158 50
=00 050 158 50
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1.6 2.7

L=20
I w----- e emalle s o cnill=
2.6
e “z
S« <E° 2.5
I§ 324
’ L=1
__‘___9_A____A____A____A_
2.3
1 2 3 4 5 6 50 60 70 80 90 100 110 120
InL Pmax

FIG. 4. An illustration of\A,/AZ®. This plot shows a degree of  FIG. 6. A plot showing the sensitivity of the numerical solutions
deformation of a black hole. One sees that.adecreases the ratio to the position of asymptotic boundary. The calculations are per-
of a mean radius in four-dimensiok,"’? (on the brangto that in  formed forL = 10 andL = 20. The position of asymptotic boundary
five-dimensionAL” increases. It indicates that the black hole tendsp,,...is changed fronp =50 t0 pma=115 keeping the ratio of the
to flatten as its horizon radius increases. The dashed line shows thesolution fixed aBp ./ dp~2.71 with 5p;~0.05. We see that the
same quantity for the 5D Schwarzschild black hole. Note thest  variation of the thermodynamic quantity is no more than 1%, and is
expressed in natural logarithm. stable for this parameter range @f ..

axisymmetric codesee, e.g.[48]). In particular, the first relativistic star in the braneworld model4]. Thus improve-
terms in Egs(7) and(8) that have the factor A7 give severe ment of the numerical scheme and formulation to avoid this
contributions near the axis, and they invoke numerical instainstability is an important issue. It may be worth pointing out
bility. The same problem appeared in the calculation of ahat since we do not have any uniqueness theorem in the

Log, 04l Log, @l
30 10 30 10
25 25
20 20
Q Q
15 15
10 10
5H 5
0 /4 /2 0 T/4 m/2
X X
LOg |®1|/N1 Log |®2|/N2
30 SO 30 —
25 25 0.6
20 20
Q Q
15 15
10 10
5 5 -1.9
0 /4 /2 0 /4 w/2
X X

FIG. 5. An illustration of the constraint equations for=15. The figures that plot the absolute values of two constraint equati®npis,
and|®,|, show the absolute errors of the constraint equations. The other two figures pl@titg x)|/N1(p,x) and|®,(p,x)|/Na(p,x)
show the relative accuracy of the constraint equations shicend N, are norms of respective constraint equatigsse Table )l As
expected, the absolute errors of the constraint equations are observed mainly near the axis of polar coordinates and around the horizon.
However, the relative accuracy is not significantly low around the horizon, but it is worse near the axis and in the asymptotic region.
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context of the braneworl{50,49, there is a possibility of portant. We hope the method used in this paper will become

finding a sequence of solutions other than that found in thishe basis for further studies on black holes in higher dimen-

paper if we start with a completely different initial guess. sions.
It is worthwhile to point out that the boundary conditions

that we have imposed do natpriori guarantee the absence

of naked singularities in the bulk or on the horizon. If any

solution obtained in our formulation cannot avoid a naked

singularity in the bulk or on the horizon, it means that there We would like to thank Shu-ichiro Inutsuka, Toby Wise-

is no physically acceptable static black hole in the RS infiniteman, Tetsuya Shiromizu, Roberto Emparan, Nemanja Ka-

braneworld. Such a possibility was pointed out for large lo-loper, and Shinji Mukohyama for their helpful comments and
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