157 research outputs found

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations

    Get PDF
    In order to predict accurately how elevated atmospheric CO2 concentrations will affect the global carbon cycle, it is necessary to know how trees respond to increasing CO2 concentrations. In this paper we examine the response over the period AD 1895 – 1994 of three tree species growing across northern Europe to increases in atmospheric CO2 concentrations using parameters derived from stable carbon isotope ratios of trunk cellulose. Using the isotope data we calculate values of intrinsic water-use efficiency (IWUE) and intercellular CO2 concentrations in the leaf (ci). Our results show that trees have responded to higher levels of atmospheric CO2 by increasing IWUE whilst generally maintaining constant ci values. However, the IWUE of most of the trees in this study has not continued to rise in line with increasing atmospheric CO2. This behaviour has implications for estimations of future terrestrial carbon storage

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Overview of the JET results in support to ITER

    Get PDF

    Social support for elderly patients with chronic wounds

    No full text
    Few attempts have been made to measure the social support received by elderly patients with chronic wounds. To focus research on these issues, an established model integrating the various roles played by social support in the adaptation of patients to stressful situations was applied. Two questionnaires were used to measure perceived social support and coping in a sample of patients with leg ulcers (N = 15, mean age 70.4 years) or diabetic foot ulcers (N = 15, mean age 63.6 years) at two time-points over a four-month period. The results indicate that there were no statistical differences between the groups. The overall levels of social support were low, with emotional support recorded most frequently. The standardised scores for types of coping indicate no unusual patterns, although the scores for logical analysis were low. However, there was considerable variation in the types of coping strategies used by individuals

    Observation of enhanced ion particle transport in mixed H/D isotope plasmas on JET

    No full text
    Particle transport in tokamak plasmas has been intensively studied in the past, particularly in relation to density peaking and the presence of anomalous inward particle convection in L- and H-modes. While in the L-mode case the presence of the anomalous inward pinch has previously been unambiguously demonstrated, particle transport in the H-mode was unclear. The main difficulty of such studies is that particle diffusion and convection could not be measured independently in steady-state conditions in the presence of a core particle flux. Therefore, it is usually not possible to separate the transport effect(inward convection), from the source effect (slow diffusion of particles introduced to the plasma core by neutral beam injection heating). In this work we describe experiments done on JET with mixtures of two hydrogenic isotopes: H and D. It is demonstrated that in the case of several ion species, convection and diffusion can be separated in a steady plasma without implementation of perturbative techniques such as gas puff modulation. Previous H-mode density peaking studies suggested that for this relatively high electron collisionality plasma scenario, the observed density gradient is mostly driven by particle source and low particle diffusivity D < 0.5 ∗ χ eff. Transport coefficients derived from observation of the isotope profiles in the new experiments far exceed that value - ion particle diffusion is found to be as high as D 2 ∗ χ eff, combined with a strong inward convection. Apparent disagreement with previous findings was explained by significantly faster transport of ion components with respect to the electrons, which could not be observed in a single main ion species plasma. This conclusion is confirmed by quasilinear gyrokinetic simulations
    corecore