110 research outputs found

    Hydropyrolysis: implications for radiocarbon pre-treatment and characterization of Black Carbon

    Get PDF
    Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as Black Carbon (BC). BC degrades extremely slowly, and is resistant to diagenetic alteration involving the addition of exogenous carbon making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions

    Water diffusion into UV inscripted long period grating in microstructured polymer fibre

    Get PDF
    A long period grating was photoinscribed step-by-step in microstructured poly(methyl methacrylate) fiber for the first time using a continuous wave HeCd laser at 325 nm, irradiating the fiber with a power of 1 mW. The grating had a length of 2 cm and a period of 1 mm. A series of cladding mode coupling resonances were observed throughout the spectral region studied of 600 to 1100 nm. The resonance wavelengths were shown to be sensitive to the diffusion of water into the fiber

    Grating and interferometric devices in POF

    Get PDF
    To date, much of the development work associated with polymer optical fibre (POF) applications has been aimed at exploiting the potential of the technology to provide low cost solutions. Here we argue that, in the sensing area at least, POF offers a number of other, more relevant advantages. In this paper we describe work on a range of devices based on photoinscribed gratings and on fibre interferometers, which are designed to take advantage of the unique properties of POF

    Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials

    Get PDF
    A wide selection of thermal, chemical and optical methods have been proposed for the quantification of black carbon (BC) in environmental matrices, and the results to date differ markedly depending upon the method used. A new approach is hydropyrolysis (hypy), where pyrolysis assisted by high hydrogen pressures (150 bar) facilitates the complete reductive removal of labile organic matter, so isolating a highly stable portion of the BC continuum (defined as BChypy). Here, the potential of hypy for the isolation and quantification of BC is evaluated using the 12 reference materials from the International BC Ring Trial, comprising BC-rich samples, BC-containing environmental matrices and BC-free potentially interfering materials. By varying the hypy operating conditions, it is demonstrated that lignocellulosic, humic and other labile organic carbon material (defined as non-BChypy) is fully removed by 550 °C, with hydrogasification of the remaining BChypy not commencing until over 575 °C. The resulting plateau in sample mass and carbon loss is apparent in all of the environmental samples, facilitating BC quantification in a wide range of materials. The BChypy contents for all 12 ring trial samples fall within the range reported in the BC inter-comparison study, and systematic differences with other methods are rationalised. All methods for BC isolation, including hypy are limited by the fact that BC cannot be distinguished from extremely thermally mature organic matter; for example in high rank coals. However, the data reported here indicates that BChypy has an atomic H/C ratio of less than 0.5 and therefore comprises a chemically well-defined polyaromatic structure in terms of the average size of peri-condensed aromatic clusters of >7 rings (24 carbon atoms), that is consistent across different sample matrices. This, together with the sound underlying rationale for the reductive removal of labile organic matter, makes hypy an ideal approach for matrix independent BC quantification. The hypy results are extremely reproducible, with BChypy determinations from triplicate analyses typically within ±2% across all samples, limited mainly by the precision of the elemental analyser

    Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    Get PDF
    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors, with the possible cause being the molecular relaxation of the polymer when fiber is raised above the β-transition temperature. A simple, cost-effective, but well controlled method for fiber annealing is also presented in this work. In addition, the effects of chemical etching on the strain, stress, and force sensitivities have been investigated. Results show that fiber etching too can increase the force sensitivity, and it can also affect the strain and stress sensitivities of the Bragg grating sensors

    20 years of the Atlantic Meridional Transect - AMT

    Get PDF
    The AMT (www.amt-uk.org) is a multidisciplinary programme which undertakes biological, chemical, and physical oceanographic research during an annual voyage between the UK and a destination in the South Atlantic such as the Falkland Islands, South Africa, or Chile. This transect of >12,000 km crosses a range of ecosystems from subpolar to tropical, from euphotic shelf seas and upwelling systems, to oligotrophic mid-ocean gyres. The year 2015 has seen two milestones in the history of the AMT: the achievement of 20 years of this unique ocean going programme and the departure of the 25th cruise on the 15th of September. Both of these events were celebrated in June this year with an open science conference hosted by the Plymouth Marine Laboratory (PML) and will be further documented in a special issue of Progress in Oceanography which is planned for publication in 2016. Since 1995, the 25 research cruises have involved 242 sea-going scientists from 66 institutes representing 22 countries. AMT was designed from the outset to be a collaborative programme. It was originally conceived by Jim Aiken, Patrick Holligan, Roger Harris, and Dave Robins with Chuck McClain and Chuck Trees at NASA to test and ground truth satellite algorithms of ocean color. The opportunities offered by this initiative meant that this series of repeated biannual cruises rapidly developed into a coordinated study of ocean biodiversity, biogeochemistry, and ocean/atmosphere interactions

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Broadband multi-wavelength properties of M87 during the 2017 Event Horizon Telescope campaign

    Get PDF
    High Energy AstrophysicsInstrumentatio
    corecore