757 research outputs found

    Percutaneous endoscopic gastrostomy: Indications, technique and complications at Groote Schuur Hospital

    Get PDF
    Percutaneous endoscopic gastrostomy (PEG) is a relatively new technique in South Africa. It is useful in the management of patients with neurological and oropharyngeal disorders in whom long-term feeding is necessary. The PEGs inserted in patients at Groote Schuur Hospital between June 1986 and March 1990 as part of an on-going study to evaluate this procedure are reported

    Hot probe measurements on neutron irradiated, isotope enriched ZnO nanorods

    Get PDF
    We report on neutron transmutation doping (NTD) of isotopically (64Zn) enriched ZnO nanorods to produce material with holes as the majority mobile carrier. Nanorods of ZnO enriched with 64Zn were synthesised and the abundance of 64Zn in these samples is ∼ 71%, compared to the natural abundance of ∼ 49 %. The enriched material was irradiated with thermal neutrons which converts some 64Zn to 65Zn. The 65Zn decays to 65Cu with a half-life of 244 days and the Cu can act as an acceptor dopant. After 690 days, a hot probe technique was used to determine the majority charge carriers in non-irradiated and neutron irradiated nanorod samples. Non-irradiated samples were measured to be to have electrons as the majority mobile carrier and the irradiated samples were measured to have holes as the majority mobile carrier

    Atom probe microscopy of zinc isotopic enrichment in ZnO nanorods

    Get PDF
    We report on atomic probe microscopy (APM) of isotopically enriched ZnO nanorods that measures the spatial distribution of zinc isotopes in sections of ZnO nanorods for natural abundance natZnO and 64Zn and 66Zn enriched ZnO nanorods. The results demonstrate that APM can accurately quantify isotopic abundances within these nanoscale structures. Therefore the atom probe microscope is a useful tool for characterizing Zn isotopic heterostructures in ZnO. Isotopic heterostructures have been proposed for controlling thermal conductivity and also, combined with neutron transmutation doping, they could be key to a novel technology for producing p-n junctions in ZnO thin films and nanorods

    Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays

    Get PDF
    A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity

    Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓

    Get PDF
    A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0  fb-1 of pp collisions at √s=7  TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101  TeV/c2 and MLQ(B0→e±μ∓)>126  TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Measurement of the Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2β\beta measurement from B0J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0J/ψKS0)=(1.83±0.28)×105BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Branching fraction and CP asymmetry of the decays B+→K0Sπ+ and B+→K0SK+

    Get PDF
    An analysis of B+ → K0 Sπ+ and B+ → K0 S K+ decays is performed with the LHCb experiment. The pp collision data used correspond to integrated luminosities of 1 fb−1 and 2 fb−1 collected at centre-ofmass energies of √ s = 7 TeV and √ s = 8 TeV, respectively. The ratio of branching fractions and the direct CP asymmetries are measured to be B(B+ → K0 S K+ )/B(B+ → K0 Sπ+ ) = 0.064 ± 0.009 (stat.) ± 0.004 (syst.), ACP(B+ → K0 Sπ+ ) = −0.022 ± 0.025 (stat.) ± 0.010 (syst.) and ACP(B+ → K0 S K+ ) = −0.21 ± 0.14 (stat.) ± 0.01 (syst.). The data sample taken at √ s = 7 TeV is used to search for B+ c → K0 S K+ decays and results in the upper limit ( fc · B(B+ c → K0 S K+ ))/( fu · B(B+ → K0 Sπ+ )) < 5.8 × 10−2 at 90% confidence level, where fc and fu denote the hadronisation fractions of a ¯b quark into a B+ c or a B+ meson, respectively

    Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays

    Get PDF
    Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of prime importance in probing new physics. Here 7421 +/- 105 signal events from the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A time-dependent fit to the data yields a value of phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201

    Absolute luminosity measurements with the LHCb detector at the LHC

    Get PDF
    Absolute luminosity measurements are of general interest for colliding-beam experiments at storage rings. These measurements are necessary to determine the absolute cross-sections of reaction processes and are valuable to quantify the performance of the accelerator. Using data taken in 2010, LHCb has applied two methods to determine the absolute scale of its luminosity measurements for proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In addition to the classic "van der Meer scan" method a novel technique has been developed which makes use of direct imaging of the individual beams using beam-gas and beam-beam interactions. This beam imaging method is made possible by the high resolution of the LHCb vertex detector and the close proximity of the detector to the beams, and allows beam parameters such as positions, angles and widths to be determined. The results of the two methods have comparable precision and are in good agreement. Combining the two methods, an overall precision of 3.5% in the absolute luminosity determination is reached. The techniques used to transport the absolute luminosity calibration to the full 2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6, 9 and 10 and corresponding explanation in the tex
    corecore