4,728 research outputs found

    Backgrounds for rare muonic B-meson decays in ATLAS

    Get PDF
    The work gives an overview of expected exclusive backgrounds for rare muonic B-meson decays in ATLAS. Based on theoretical calculations and a modelling in Generators, followed by phase space cuts according to fiducial detector volume and trigger acceptance, the authors classify all possible backgrounds according to their importance and select those requiring full detector simulation. The most importat background comes from Bd0πμ+νμB_d^0 \to \pi^- \mu^+ \nu_{\mu}, when a charged pion decays in a detector volume producing a secondary muon. Similar mechanism would lead to a background comming from B-mesons decaying to two charged hadrons. Another important background is from B+μ+μl+νB^+ \to \mu^+\mu^-l^+ \nu.This note gives an overview of expected exclusive backgrounds for rare muonic B–meson decays at ATLAS from the theoretical point of view. The goal of this work is to show which of backgrounds are most important for further full detector simulation. It is shown that the most important noncombinatorial background comes from Bd0πμ+νμB_d^0 \to \pi^- \mu^+ \nu_{\mu} fake rate. Another important BG sources are B+μ+μ+ν,Bc+J/ψ(μ+μ)νB^+ \to \mu^+\mu^-\ell^+ \nu_{\ell}, B_c^+ \to J/\psi (\mu^+ \mu^-) \ell \nu_{\ell} and two-body hadronic B–meson decays

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS

    Full text link
    We report on a direct search for sub-GeV dark photons (A') which might be produced in the reaction e^- Z \to e^- Z A' via kinetic mixing with photons by 100 GeV electrons incident on an active target in the NA64 experiment at the CERN SPS. The A's would decay invisibly into dark matter particles resulting in events with large missing energy. No evidence for such decays was found with 2.75\cdot 10^{9} electrons on target. We set new limits on the \gamma-A' mixing strength and exclude the invisible A' with a mass < 100 MeV as an explanation of the muon g_\mu-2 anomaly.Comment: 6 pages, 3 figures; Typos corrected, references adde

    Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    Full text link
    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly complementing the physics capabilities. This experiment will offer remarkable discovery potentialities, collecting a very large number of unbiased events both in the neutrino and antineutrino channels, largely adequate to definitely settle the origin of the observed neutrino-related anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 201

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore