171 research outputs found

    Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

    Get PDF
    We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases \u3c100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy

    Intercomparisons of airborne measurements of aerosol ionic chemical composition during TRACE-P and ACE-Asia

    Get PDF
    As part of the two field studies, Transport and Chemical Evolution over the Pacific (TRACE-P) and the Asian Aerosol Characterization Experiment (ACE-Asia), the inorganic chemical composition of tropospheric aerosols was measured over the western Pacific from three separate aircraft using various methods. Comparisons are made between the rapid online techniques of the particle into liquid sampler (PILS) for measurement of a suite of fine particle a mist chamber/ion chromatograph (MC/IC) measurement of fine sulfate, and the longer time-integrated filter and micro-orifice impactor (MOI) measurements. Comparisons between identical PILS on two separate aircraft flying in formation showed that they were highly correlated (e.g., sulfate r2 of 0.95), but were systematically different by 10 ± 5% (linear regression slope and 95% confidence bounds), and had generally higher concentrations on the aircraft with a low-turbulence inlet and shorter inlet-to-instrument transmission tubing. Comparisons of PILS and mist chamber measurements of fine sulfate on two different aircraft during formation flying had an r 2 of 0.78 and a relative difference of 39% ± 5%. MOI ionic data integrated to the PILS upper measurement size of 1.3 mm sampling from separate inlets on the same aircraft showed that for sulfate, PILS and MOI were within 14% ± 6% and correlated with an r 2 of 0.87. Most ionic compounds were within ±30%, which is in the range of differences reported between PILS and integrated samplers from ground-based comparisons. In many cases, direct intercomparison between the various instruments is difficult due to differences in upper-size detection limits. However, for this study, the results suggest that the fine particle mass composition measured from aircraft agree to within 30–40%

    Nitrous oxide dynamics in low oxygen regions of the Pacific: insights from the MEMENTO database

    Get PDF
    The Eastern Tropical Pacific (ETP) is believed to be one of the largest marine sources of the greenhouse gas nitrous oxide N2O). Future N2Oemissions from the ETP are highly uncertain because oxygen minimum zones are expected to expand, affecting both regional production and consumption of N2O. Here we assess three primary uncertainties in how N2O may respond to changing O2 levels: (1) the relationship between N2O production and O2 (is it linear or exponential at low O2 concentrations?), (2) the cutoff point at which net N2O production switches to net N2O consumption (uncertainties in this parameterization can lead to differences in model ETP N2O concentrations of more than 20%), and (3) the rate of net N2O consumption at low O2. Based on the MEMENTO database, which is the largest N2O dataset currently available, we find that N2O production in the ETP increases linearly rather than exponentially with decreasing O2. Additionally, net N2O consumption switches to net N2O production at ~ 10 μM O2, a value in line with recent studies that suggest consumption occurs on a larger scale than previously thought. N2O consumption is on the order of 0.129 mmol N2O m−3 yr−1 in the Peru–Chile Undercurrent. Based on these findings, it appears that recent studies substantially overestimated N2O production in the ETP. In light of expected deoxygenation, future N2O production is still uncertain, but due to higher-than-expected consumption levels, it is possible that N2Oconcentrations may decrease rather than increase as oxygen minimum zones expand

    Atmospheric implications of studies of Central American volcanic eruption clouds

    Get PDF
    During February 1978 a group of scientists from the National Center for Atmospheric Research, several colleges and universities, the U.S. Geological Survey, and NASA used a specially equipped Beech Queen Air aircraft to make 11 sampling flights in Guatemala through the eruption clouds from the volcanoes Pacaya, Fuego, and Santiguito. Measurements were made of SO42−, SO2, HCl, HF, and 11 cations that were in water-soluble form, on samples collected by a specially designed filter pack. Particle size distributions were obtained with a piezoelectric cascade impactor, and the particles were identified by energy dispersive X ray analysis. Evacuated canisters were flown to obtain samples for gas Chromatographic analysis. Some of the conclusions reached are that since most of the sulfur was found to be in the form of SO2, the H2SO4 droplets resulting from major explosive eruptions must largely result from the reaction of SO2 with OH, at the same time depleting the atmosphere of OH; the volume concentration ratio [SO2]/[HCl] always somewhat exceeded unity; and the amount of fine ash remaining in the stratosphere for long periods of time may depend on the crystallinity of the magma. Correlation spectrometry showed that each volcano was emitting 300–1500 metric tons of SO2 per day

    Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) Experiment

    Get PDF
    A combined atmospheric chemistry-meteorology experiment, the Dynamics and Chemistry of the Marine Stratocumulus (DYCOMS), was carried out during the summer of 1985 over the eastern Pacific Ocean using the NCAR Electra aircraft. The objectives were to 1) study the budgets of several trace reactive species in a relatively pristine, steady-state, horizontally homogeneous, well-mixed boundary layer capped by a strong inversion and 2) study the formation, maintenance and dissipation of marine stratocumulus that persists off the California coast (as well as similar regions elsewhere) in summer. We obtained both mean and turbulence measurements of meteorological variables within and above the cloud-capped boundary layer that is typical of this region. Ozone was used successfully as a tracer for estimating entrainment rate. We found, however, that horizontal variability was large enough for ozone that a correction needs to be included in the ozone budget for the horizontal displacement due to turns even though the airplane was allowed to drift with the wind. The time rate-of-change term was significant in both the ozone and radon budgets; as a result, a considerably longer time interval than the two hours used between sets of flight legs would be desirable to improve the measurement accuracy of this term

    Establishing Lagrangian connections between observations within air masses crossing the Atlantic during the International Consortium for Atmospheric Research on Transport and Transformation experiment

    Get PDF
    The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches'' is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed

    ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution

    Get PDF
    Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass-burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change

    Atmospheric sulfur cycling in the southeastern Pacific – longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx

    Get PDF
    Dimethylsulfide (DMS) emitted from the ocean is a biogenic precursor gas for sulfur dioxide (SO<sub>2</sub>) and non-sea-salt sulfate aerosols (SO<sub>4</sub><sup>2−</sup>). During the VAMOS-Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in 2008, multiple instrumented platforms were deployed in the Southeastern Pacific (SEP) off the coast of Chile and Peru to study the linkage between aerosols and stratocumulus clouds. We present here observations from the NOAA Ship <i>Ronald H. Brown</i> and the NSF/NCAR C-130 aircraft along ~20° S from the coast (70° W) to a remote marine atmosphere (85° W). While SO<sub>4</sub><sup>2−</sup> and SO<sub>2</sub> concentrations were distinctly elevated above background levels in the coastal marine boundary layer (MBL) due to anthropogenic influence (~800 and 80 pptv, respectively), their concentrations rapidly decreased west of 78° W (~100 and 25 pptv). In the remote region, entrainment from the free troposphere (FT) increased MBL SO<sub>2</sub> burden at a rate of 0.05 ± 0.02 μmoles m<sup>−2</sup> day<sup>−1</sup> and diluted MBL SO<sub>4</sub><sup>2</sup> burden at a rate of 0.5 ± 0.3 μmoles m<sup>−2</sup> day<sup>−1</sup>, while the sea-to-air DMS flux (3.8 ± 0.4 μmoles m<sup>−2</sup> day<sup>−1</sup>) remained the predominant source of sulfur mass to the MBL. In-cloud oxidation was found to be the most important mechanism for SO<sub>2</sub> removal and in situ SO<sub>4</sub><sup>2−</sup> production. Surface SO<sub>4</sub><sup>2−</sup> concentration in the remote MBL displayed pronounced diel variability, increasing rapidly in the first few hours after sunset and decaying for the rest of the day. We theorize that the increase in SO<sub>4</sub><sup>2−</sup> was due to nighttime recoupling of the MBL that mixed down cloud-processed air, while decoupling and sporadic precipitation scavenging were responsible for the daytime decline in SO<sub>4</sub><sup>2−</sup>

    Multi-Decadal Aerosol Variations from 1980 to 2009: A Perspective from Observations and a Global Model

    Get PDF
    Aerosol variations and trends over different land and ocean regions during 1980-2009 are analyzed with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and observations from multiple satellite sensors and ground-based networks. Excluding time periods with large volcanic influences, the tendency of aerosol optical depth (AOD) and surface concentration over polluted land regions is consistent with the anthropogenic emission changes.The largest reduction occurs over Europe, and regions in North America and Russia also exhibit reductions. On the other hand, East Asia and South Asia show AOD increases, although relatively large amount of natural aerosols in Asia makes the total changes less directly connected to the pollutant emission trends. Over major dust source regions, model analysis indicates that the dust emissions over the Sahara and Sahel respond mainly to the near-surface wind speed, but over Central Asia they are largely influenced by ground wetness. The decreasing dust trend in the tropical North Atlantic is most closely associated with the decrease of Sahel dust emission and increase of precipitation over the tropical North Atlantic, likely driven by the sea surface temperature increase. Despite significant regional trends, the model-calculated global annual average AOD shows little changes over land and ocean in the past three decades, because opposite trends in different regions cancel each other in the global average. This highlights the need for regional-scale aerosol assessment, as the global average value conceals regional changes, and thus is not sufficient for assessing changes in aerosol loading
    • …
    corecore