130 research outputs found

    Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Get PDF
    In some mammals, halogenated aromatic hydrocarbon (HAH) exposure causes wasting syndrome, defined as significant weight loss associated with lethal outcomes. The most potent HAH in causing wasting is 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD), which exerts its toxic effects through the aryl hydrocarbon receptor (AHR). Since TCDD toxicity is thought to predominantly arise from dysregulation of AHR-transcribed genes, it was hypothesized that wasting syndrome is a result of to TCDD-induced dysregulation of genes involved in regulation of food-intake. As the hypothalamus is the central nervous systems' regulatory center for food-intake and energy balance. Therefore, mRNA abundances in hypothalamic tissue from two rat strains with widely differing sensitivities to TCDD-induced wasting syndrome: TCDD-sensitive Long-Evans rats and TCDD-resistant Han/Wistar rats, 23 h after exposure to TCDD (100 mu g/kg) or corn oil vehicle. TCDD exposure caused minimal transcriptional dysregulation in the hypothalamus, with only 6 genes significantly altered in Long-Evans rats and 15 genes in Han/Wistar rats. Two of the most dysregulated genes were Cyp1a1 and Nqo1, which are induced by TCDD across a wide range of tissues and are considered sensitive markers of TCDD exposure. The minimal response of the hypothalamic transcriptome to a lethal dose of TCDD at an early time-point suggests that the hypothalamus is not the predominant site of initial events leading to hypophagia and associated wasting. TCDD may affect feeding behaviour via events upstream or downstream of the hypothalamus, and further work is required to evaluate this at the level of individual hypothalamic nuclei and subregions. (C) 2014 The Authors. Published by Elsevier Ireland Ltd.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Physical activity, sleep and cardiovascular health data for 50,000 individuals from the MyHeart Counts Study

    Get PDF
    Studies have established the importance of physical activity and fitness for long-term cardiovascular health, yet limited data exist on the association between objective, real-world large-scale physical activity patterns, fitness, sleep, and cardiovascular health primarily due to difficulties in collecting such datasets. We present data from the MyHeart Counts Cardiovascular Health Study, wherein participants contributed data via an iPhone application built using Apple's ResearchKit framework and consented to make this data available freely for further research applications. In this smartphone-based study of cardiovascular health, participants recorded daily physical activity, completed health questionnaires, and performed a 6-minute walk fitness test. Data from English-speaking participants aged 18 years or older with a US-registered iPhone who agreed to share their data broadly and who enrolled between the study's launch and the time of the data freeze for this data release (March 10 2015-October 28 2015) are now available for further research. It is anticipated that releasing this large-scale collection of real-world physical activity, fitness, sleep, and cardiovascular health data will enable the research community to work collaboratively towards improving our understanding of the relationship between cardiovascular indicators, lifestyle, and overall health, as well as inform mobile health research best practices

    BR-squared: a practical solution to the winner’s curse in genome-wide scans

    Get PDF
    The detrimental effects of the winner’s curse, including overestimation of the genetic effects of associated variants and underestimation of sufficient sample sizes for replication studies are well-recognized in genome-wide association studies (GWAS). These effects can be expected to worsen as the field moves from GWAS into whole genome sequencing. To date, few studies have reported statistical adjustments to the naive estimates, due to the lack of suitable statistical methods and computational tools. We have developed an efficient genome-wide non-parametric method that explicitly accounts for the threshold, ranking, and allele frequency effects in whole genome scans. Here, we implement the method to provide bias-reduced estimates via bootstrap re-sampling (BR-squared) for association studies of both disease status and quantitative traits, and we report the results of applying BR-squared to GWAS of psoriasis and HbA1c. We observed over 50% reduction in the genetic effect size estimation for many associated SNPs. This translates into a greater than fourfold increase in sample size requirements for successful replication studies, which in part explains some of the apparent failures in replicating the original signals. Our analysis suggests that adjusting for the winner’s curse is critical for interpreting findings from whole genome scans and planning replication and meta-GWAS studies, as well as in attempts to translate findings into the clinical setting

    Refurbishment options to decarbonise a 1960s public office building by 2050s

    Get PDF
    Climate change and the subsequent impact this has on carbon emissions for buildings has shown great concern for the industry. With over 1.35 million non-domestic buildings at least over 25 years old; the need for more practical refurbishment strategies in order to decarbonise and future-proof the old building stock against climate change is vital. The aim of this paper is to explore more sustainable, economic and less-disruptive refurbishment approaches for an air conditioned building as efficient future weather mitigation measures. Particular emphasis was placed on the evaluation of the carbon reductions associated with the best-suited approaches under two future climatic scenarios, 2030 & 2050. A building simulation model of a public office building has been developed to assess the current energy performance as well as the predicted future energy performance for two refurbishment strategies. These strategies are adaptive thermal control and fabric modification. A reduction in carbon emissions, of 7.5%, results from applying adaptive heating and cooling set points to the model with a current weather data scenario. This reduces to 6.8% in 2030 and 5.3% in 2050. The potential savings are most significant for the current climate scenario and then reduce for the 2030 and 2050 scenarios largely because of an elevation in heating set points. In terms of cooling, an upper limit to the cooling set point of 26°C prevents meaningful differentiation between the 2030 and 2050 adaptive cooling set points but is necessary due to the lack of opportunities for building occupants to adapt their conditions. There is scope for research to be carried out into the application of adaptive set points for existing buildings. Some work has been carried out on the cooling scenario but little appears to have been done for heating as of yet. Given that this could be retrofitted into BMS systems, it is a potential option to reduce building carbon emissions with minimal cost for buildings with centralised systems. For the fabric modification, a significant reduction in carbon emissions was achieved by the use of composite panels to replace much of the glazing. This resulted in a significant improvement in building performance but at a significant investment cost
    corecore