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Abstract

To identify loci affecting the electrocardiographic QT interval, a measure of cardiac repolarisation associated with risk of
ventricular arrhythmias and sudden cardiac death, we conducted a meta-analysis of three genome-wide association studies
(GWAS) including 3,558 subjects from the TwinsUK and BRIGHT cohorts in the UK and the DCCT/EDIC cohort from North
America. Five loci were significantly associated with QT interval at P,161026. To validate these findings we performed an in
silico comparison with data from two QT consortia: QTSCD (n = 15,842) and QTGEN (n = 13,685). Analysis confirmed the
association between common variants near NOS1AP (P = 1.4610283) and the phospholamban (PLN) gene (P = 1.9610229).
The most associated SNP near NOS1AP (rs12143842) explains 0.82% variance; the SNP near PLN (rs11153730) explains 0.74%
variance of QT interval duration. We found no evidence for interaction between these two SNPs (P = 0.99). PLN is a key
regulator of cardiac diastolic function and is involved in regulating intracellular calcium cycling, it has only recently been
identified as a susceptibility locus for QT interval. These data offer further mechanistic insights into genetic influence on the
QT interval which may predispose to life threatening arrhythmias and sudden cardiac death.
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Introduction

The QT interval on the electrocardiogram (ECG) represents the

period of ventricular depolarization and subsequent repolarisation.

Individuals with delayed cardiac repolarisation show a longer QT

interval and this predisposes them to the development of cardiac

arrhythmias. Patients with the rare Mendelian Long QT Syndrome

(LQTS) are at risk of sudden cardiac death [1]. Lengthening of the

heart-rate corrected QT interval within the normal range is

associated with increased coronary heart disease incidence and

mortality, as well as all-cause mortality [2,3]. QT prolongation is the

most common cause for withdrawal or restriction of drugs that have

already been marketed. Furthermore, many potentially valuable

drugs fail to be approved or are downgraded to second-line status

because they prolong QT and increase risk of serious life

threatening arrhythmias, especially torsade de pointes [4].

QT interval length is known to be influenced by various

parameters such as heart rate [5], age [6], sex [7], and medications

Phospholamban, NOS1AP, QT
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[8], and studies have suggested that QT interval at the population

level is a genetically influenced quantitative trait with up to 52%

heritability [9–11]. Until recently, research into genetic factors

influencing QT interval was limited to candidate genes known to

have a role in arrhythmogenesis on the basis of their involvement in

Mendelian Long or Short-QT Syndrome (LQTS or SQTS) [12–17].

However, an early genome-wide association (GWA) study [18]

identified a common genetic variant (rs10494366) in the nitric oxide

synthase 1 adaptor protein (NOS1AP) gene region, which has been

consistently associated with QT-interval variation across many

independent replication studies [19–24] The NOS1AP variant has

been estimated to explain up to 1.5% of QT variance [18], therefore

larger GWA studies of QT interval have the potential to detect

additional common genetic variants, likely of more modest effect size.

Recently, two consortia (QTGEN [25] and QTSCD [26]) reported

meta-analyses of GWAS of QT interval duration in population-based

cohorts, these papers describe a number of new loci [25,26].

We report a meta-analysis of three GWA studies totalling 3,558

individuals and test for association between QT interval duration and

approximately 2.4 million genotyped or imputed single nucleotide

polymorphisms (SNPs). Subsequently, we performed an in silico

comparison for our five most significant SNPs with QTGEN

(n = 13,685) [25] and QTSCD (n = 15,842) [26]. Our results confirm

the known association with the NOS1AP locus and QT interval

duration, more importantly it confirms the recently reported

association of variants near the PLN locus [25,26]. We found no

evidence of gene-gene interaction between NOS1AP and PLN.

Results and Discussion

Meta-analysis results from TwinsUK, BRIGHT and DCCT/
EDIC cohorts

The characteristics of the 3,558 individuals included in the

meta-analysis are shown in Table 1. Genome wide genotyping was

performed using a variety of platforms; therefore we imputed

genotypes using the HapMap CEU sample. A total of 2,399,142

genotyped or imputed SNPs met the inclusion criteria for our

study; we tested these for association with QT interval using an

additive model. We observed highly associated SNPs in five

chromosomal regions 1q23.3, 6q22.31, 13q13, 20p13 and 21q21.3

(Figure 1). Possible bias caused by population stratification was

checked by calculating the genomic inflation factor l of the meta-

analysis [27,28]. The l was 1.016 indicating our samples showed

little evidence for population stratification and therefore the results

of the meta-analysis were not adjusted (Figure 2). Table 2 shows

the results by cohort of the most significant SNP for each

associated region, Table S1 shows the results for all SNPs with

P,161026. One SNP (rs885170) near NBEA on chromosome 13

exceeded the genome-wide significance threshold, P = 561028

based on recent estimations of the genome-wide testing burden for

common sequence variation [29,30]. Four other SNPs had

P,161026. The first was rs12143842 (P = 2.161027), it is located

on chromosome 1, upstream of NOS1AP, a gene already identified

as prolonging QT interval [18]. The second SNP rs2832357

(P = 2.361027) is located on chromosome 21, near GRIK1, the

third rs11153730 (P = 6.461027) is located on chromosome 6 in

an intergenic region in a cluster of SNPs near three genes

SLC35F1, C6orf204 and PLN. The final locus, rs6038729

(P = 6.361027) is located on chromosome 20, near the BMP2

gene.

Results for known LQTS and SQTS candidate genes
There are 11 genes identified to date as being causative for

Mendelian single gene forms of LQTS and SQTS. Notably, both

of the recent GWAS meta-analyses [25,26] found that common

variants in a subset of these genes encoding ion channels, known to

cause the Mendelian LQTS, were the most strongly associated

with QT interval. We looked up the SNP with the lowest P-value

in each of these genes and up to 20 kb upstream and downstream.

Only one SNP in KCNE1 (LQT5; rs3787730 A.G; frequency

allele A: 31.7%; b<21.6 ms/allele A; P = 0.00045; Table S2) was

found to be significantly associated with QT interval, although not

genome-wide significant. This SNP was not in linkage disequilib-

rium with the polymorphisms D85N (rs1805128; r2 = 0.011;

Figure 1. Manhattan plot for QT interval based on GWAS meta-analysis of TwinsUK, BRIGHT, and DCCT/EDIC cohorts. SNPs are
ordered along the chromosomes on the x-axis. The 2log10 (P) results are plotted for 2,399,142 SNPs of the meta-analysis of TwinsUK, BRIGHT and
DCCT/EDIC cohorts for 3,558 individuals. The red dots indicate SNPs with P,1026.
doi:10.1371/journal.pone.0006138.g001

Table 1. Study characteristics of the TwinsUK, BRIGHT and
DCCT/EDIC cohorts.

TwinsUK BRIGHT DCCT/EDIC

N 1,048 1,392 1,118

Age, mean (SD) 51.8 (12.0) 56.7 (10.9) 46.0 (7.0)

Sex, n (%) male 12 (1.1) 502 (36.0) 568 (51.0)

QT interval, mean (SD) 400.9 (27.9) 414.5 (33.8) 387.6 (29.2)

aHypertensive, % 21.8 100 50.8

bDiabetic, % 3.1 0 100

aSystolic blood pressure .140 mmHg or diastolic blood pressure .90 mmHg
or taking anti-hypertensive drugs.

bType 1 or type 2 diabetes.
doi:10.1371/journal.pone.0006138.t001
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PLoS ONE | www.plosone.org 3 July 2009 | Volume 4 | Issue 7 | e6138



P = 0.87) and rs727957 (r2 = 0.010; P = 0.090), which were

previously found to be associated with prolonged QT interval in

a general population [14,31]. None of the other genes showed

evidence for association with QT interval in our study.

Follow-up of the top 5 loci
To validate potential associations with QT interval we selected

the most associated SNP in each of the five regions from the

primary meta-analysis and conducted an in silico comparison with

data from the QTSCD and QTGEN consortia (Table 3). This

confirmed two of our five loci as being significantly associated with

QT interval in the replication at P = 561028; the strongest

evidence of association was with a SNP near NOS1AP, rs12143842

(P = 1.4610283). rs10494366 is the NOS1AP polymorphism most

commonly associated with QT interval in previous studies [19–

24], it reached a P-value of 0.035 in our data-set. This SNP is not

strongly correlated to rs12143842 in the HapMap CEU samples

(r2 = 0.102). The rs12143842 polymorphism explains 0.82%

variance of QT interval in our meta-analysis.

The second significantly associated locus was at chromosome

6q22.31, near the SLC35F1/C6orf204/PLN loci (rs11153730;

P = 1.9610229, Table 3; Figure 3). This SNP is intergenic in a

region with only a few genes. Little is known about SLC35F1 and

C6orf204, however the most plausible candidate gene is phospho-

lamban (PLN), an inhibitor of the Ca2+-ATPase isoform 2a

(SERCA2a), a Ca2+ transporting intracellular pump located in the

sarcoplasmic reticulum (SR) of cardiac muscle cells. The most

associated SNP rs11153730 is strongly correlated with two intronic

SNPs (rs3752581 and rs13192336) in PLN (r2 of 0.7 in HapMap

CEU samples). Both SNPs are associated with QT interval

P = 7.361024; both imputed.

The frequency of the C allele of rs11153730 near PLN was

consistent across studies (48.4% in TwinsUK; 48.1% in BRIGHT;

49.0% in DCCT/EDIC). Each C allele prolongs the standardized

QT interval by 0.122 units (corresponding to ,2.5 ms) and

explains 0.74% variance of QT interval duration (Table 2). The

effect size from combining all studies was lower, 0.09 with 0.40%

explained variance (Table 3). This decrease in effect size is not

unexpected and may be attributed to the ‘‘winner’s curse’’

phenomenon [32].

The effects of the NOS1AP and PLN loci did not show significant

heterogeneity between the three studies as tested by the Q test

(P.0.05, Table S1) [33], in total the two most significant loci in

our initial meta-analysis explain c. 1.6% of the variance in QT

interval duration. We also investigated whether there was any

evidence for a gene-gene interaction between the two most

significantly associated SNPs in the NOS1AP (rs12143842) and

PLN (rs11153730) genes. Analysis revealed no evidence to suggest

this (P = 0.99).

Phospholamban and QT interval length
Phospholamban (in its unphosphorylated state) is an inhibitor of

the Ca2+-ATPase isoform 2a (SERCA2a), a Ca2+ transporting

intracellular pump located in the SR of cardiac muscle cells. The

SR controls contraction and relaxation by regulating intracellular

calcium levels. Phosphorylation of PLN reduces inhibition of

SERCA2a, leading to activation of the Ca2+ pump, enhanced

muscle relaxation rates and decreased Ca2+ levels, thereby

contributing to the contractile response elicited by beta-agonists

[34,35].

PLN knock-out mice exhibit increased rates of basal myocardial

contraction as well as increased rates of basal myocardial

relaxation [34,35]. However, the enhanced contractility observed

with PLN knockout mice is in contrast to humans lacking PLN who

develop a lethal cardiomyopathy. Indeed, several rare (non-

HapMap) mutations in the human PLN gene have been associated

with either dilated [36] or hypertrophic cardiomyopathy [37],

presumably caused by PLN mediated over-inhibition [38,39] or

chronic activation of SERCA2a [37] respectively. Interestingly,

some of the individuals in the study of Haghighi et al. [40] who

were heterozygous for an Arg14Del mutation presented with

ventricular extra systolic beats and ventricular tachycardia.

It has previously been shown that prolongation of cardiac

repolarization elevates intracellular Ca2+, potentially increasing

the risk of arrhythmias [41]. Del Monte et al. [42] reported that

over-expression of SERCA2a in rats reduced ventricular arrhyth-

mias in an ischemia/reperfusion model. Recent evidence showed

that intracellular Ca2+ may also influence K+ currents and, thus

duration of the action potential [43]. Suppression of SERCA2a by

PLN may reduce SR Ca2+ content and lead to QT interval

shortening through calmodulin kinase II-dependent alterations in

K+ currents [44], whereas SERCA2a over-expression may result

in an increased Ca2+ content and QT interval prolongation as

shown in mice without underlying cardiac disease [43].

In addition to PLN, neuronal nitric oxide synthase (NOS1) is

also involved in regulating intracellular calcium cycling [45].

NOS1AP is a regulator of NOS1. Furthermore, a recent study of

transgenic mice with cardiomyocyte-specific NOS1 over-expression

suggested that the greater intracellular Ca2+ transients, and SR

Ca2+ load in these mice following treatment to induce cardiac

hypertrophy could be explained, at least in part, by modulation of

PLN phosphorylation status [46]. In fact, nNOS-derived NO has

Figure 2. Quantile-quantile plots of association results of the
meta-analysis from TwinsUK, BRIGHT and DCCT/EDIC cohorts.
Based on 2,399,142 SNPs in 3,558 individuals from the combined
cohorts. The 2log10(P) plot of association test for QT interval is shown
for all SNPs (black diamonds) and for all SNPs except those located
within 1 Mb of the most significant SNPs of our five associated regions
(dark grey) [26]. Genomic Control l was 1.016 [25]. The lower horizontal
line denotes the 95% percentile of the results of all SNPs, values lower
than this threshold were used for calculating the l. The upper line
indicates the point from where P-values of the complete dataset
deviate from the expected line.
doi:10.1371/journal.pone.0006138.g002
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Table 3. Results of the five most significant loci from GWAS meta-analysis of TwinsUK, BRIGHT and DCCT/EDIC cohorts and in silico
comparison with the QTGEN and QTSCD consortia data.

SNP Chr Positiona
Flanking genes (distance
to SNP in kb) Coded Allele

Meta-analysis of TwinsUK,
BRIGHT and DCCT/EDIC QTSCD QTGEN META

rs12143842 1 160,300,514 OLFML2B; NOS1AP Freq T (%) 26 24 26 25

(240.2; 5.7) Beta 0.15 0.16 0.21 0.18

P-value 2.1 1027 1.6 10235 8.1 10246 1.4 10283

rs11153730 6 118,774,215 SLC35F1;C6orf204;PLN Freq C (%) 48 50 50 50

(228.7; intronic; 202.0) Beta 0.12 0.091 0.08 0.09

P-value 6.4 1027 5.2 10216 5.3 10210 1.9 10229

rs885170 13 34,095,789 RFC3; NBEA Freq G (%) 19 20 20 20

(2657.1; 318.7) Beta 0.18 20.011 20.0051 0.01

P-value 1.8 1028 0.44 0.76 0.28

rs6038729 20 7,085,757 BMP2; FUSIP1P2 Freq C (%) 31 32 31 32

(2367.8; 675.3) Beta 0.13 0.020 20.0042 0.023

P-value 6.3 1027 0.085 0.76 0.0071

rs2832357 21 29,785,765 BACH1; GRIK1 Freq G (%) 3 3 3 3

(2129.7; 45.4) Beta 0.40 0.0075 0.022 0.053

P-value 2.3 1027 0.82 0.58 0.031

Freq: allele frequency.
aNCBI Genome build 36.3.
doi:10.1371/journal.pone.0006138.t003

Table 2. Results of the most significant SNP from the five regions associated with QT interval in GWAS meta-analysis of TwinsUK,
BRIGHT and DCCT/EDIC cohorts.

SNP ID Cohort
Coded Allele
Frequency (%) HWE (P) Genotyped Beta (SE) R2 (%)a P-value

rs12143842, chr 1 TwinsUK 24.4 0.11 No 0.22 (0.053) 1.76 3.261025

coded allele: T BRIGHT 26.6 0.89 No 0.15 (0.046) 0.83 0.0015

non-coded allele: C DCCT/EDIC 25.3 0.68 Yes 0.085 (0.049) 0.27 0.082

Meta 25.5 N/A N/A 0.15 (0.028) 0.82 2.161027

rs11153730, chr 6 TwinsUK 48.4 0.024 No 0.21 (0.145) 2.19 3.661026

coded allele: C BRIGHT 48.1 0.45 No 0.096 (0.04) 0.46 0.017

non-coded allele: T DCCT/EDIC 49 0.75 No 0.075 (0.042) 0.28 0.076

Meta 48.5 N/A N/A 0.12 (0.024) 0.74 6.461027

rs885170, chr13 TwinsUK 18.7 0.28 No 0.17 (0.058) 0.84 0.0045

coded allele: G BRIGHT 19.7 0.41 No 0.22 (0.051) 1.58 1.261025

non-coded allele: A DCCT/EDIC 17.6 0.76 No 0.14 (0.057) 0.55 0.016

Meta 18.8 N/A N/A 0.18 (0.032) 0.99 1.861028

rs6038729, chr20 TwinsUK 32.3 0.98 Yes 0.064 (0.046) 0.18 0.16

coded allele: C BRIGHT 30.1 0.14 No 0.21 (0.044) 1.87 2.161026

non-coded allele: A DCCT/EDIC 32.3 0.78 Yes 0.11 (0.046) 0.54 0.015

Meta 31.4 N/A N/A 0.13 (0.026) 0.73 6.361027

rs2832357, chr 21 TwinsUK 2.7 0.77 Yes 0.27 (0.16) 0.37 0.088

coded allele: G BRIGHT 2.8 0.2 No 0.49 (0.12) 1.29 5.361025

non-coded allele: A DCCT/EDIC 2.6 0.21 Yes 0.38 (0.13) 0.71 0.0031

Meta 2.7 N/A N/A 0.40 (0.076) 0.82 2.361027

HWE: Hardy-Weinberg equilibrium test; SE: standard error; N/A: not applicable.
aPercentage of explained variance.
doi:10.1371/journal.pone.0006138.t002
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been shown to regulate myocardial relaxation and intracellular

Ca2+ decay by promoting PKA-mediated PLN phosphorylation

[47] and in nNOS2/2 myocytes, decreased PLN phosphorylation

has been shown to decrease the rate of SR Ca2+ reuptake and

impair relaxation by inhibiting SERCA2a activity. Whether

abovementioned mechanisms are similar in humans awaits

confirmation in future studies.

In addition to interaction with the SERCA genes (ATPT2A1

and ATP2A2) and NOS1, it has also been suggested that PLN

interacts at the protein level with a number of molecules involved

in ATP-dependent transport of Ca2+ (Figure S1). Furthermore,

PLN is highly expressed in muscle and heart tissue and is co-

expressed with muscle, or heart specific genes (Figures S2 and S3).

Together with the data described above these observations suggest

that PLN is most likely to influence QT interval through

regulation of myocellular calcium cycling.

The current findings indicate that maintaining normal homeo-

static calcium cycling is crucial as when imbalanced it can lead to

human heart failure. However, PLN may also play a role in cardiac

repolarization, which again if disturbed leads to serious arrhyth-

mias. Earlier studies have suggested screening for PLN mutations

in individuals with dilated cardiomyopathy [48,49]. In view of the

fact that both super-inhibition, as well as, over-expression of

SERCA2a by PLN may lead to cardiomyopathy and heart failure,

it maybe that any therapies directed at PLN will be challenging to

develop without disturbing the fine balance between SERCA2a

and PLN.

Apart from the discovery of variants in genes causing LQTS

and SQTS [13,14,25,26,50] and NOS1AP [18–26], very few

variants have thus far been consistently associated with QT

interval duration in the general population. Our study with 3,558

individuals illustrates the potential of GWAS to identify novel

variants playing a role in determining QT interval duration. Our

results highlight the consistent role of NOS1AP genetic variants in

modulating QT interval and confirm the recently identified PLN

locus. Despite only two loci reaching genome-wide significance

overall, and their effects, although positive are modest (,1% of

variance), these results must be considered in the context of our

sample size. Meta-analyses of larger datasets will no doubt identify

additional SNPs with smaller effects or with rarer allele frequencies

associated with QT interval.

In summary, our study is amongst the first to report common

variants near PLN associated with QT interval. Functional

relevance of PLN to QT interval duration is supported, it has a

well documented role in myocellular calcium cycling, our results

suggest that further molecular and functional analyses of this gene

is warranted to pursue its role in regulating QT interval duration.

Furthermore, genetic variation in the NOS1AP gene has also been

Figure 3. Regional association plot for the SLC35F1/C6orf204/PLN locus on chromosome 6. Shown is the region extending to 500 kb either
side of the most associated SNP rs11153730. The SNPs are illustrated on 2log10(P) scale as a function of chromosomal position (NCBI build36.3). The
sentinel SNP is illustrated in blue. Surrounding SNPs are coloured according to their r2 with rs11153730 (red indicates an r2.0.8, orange an r2 of 0.5–
0.8, yellow an r2 of 0.2–0.5 and grey an r2 of less than 0.2).
doi:10.1371/journal.pone.0006138.g003
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associated with risk of mortality in patients using both cardiac and

non-cardiac drugs [51,52]. Therefore the observed association

between PLN and QT interval may also have implications for

cardiac and non-cardiac drug development, as QT prolongation is

a very common reason for cessation of development or withdrawal

of drugs. Further investigation into the potential interaction

between PLN variants and drug-induced QT prolongation would

also be of great interest.

Materials and Methods

Ethics Statement
All subjects involved in the study gave fully informed written

consent for the collection of samples and subsequent analysis. The

TwinsUK study received written ethical approval for this study

from the National Research Ethics Service (St. Thomas’ Research

Ethics Committee Ref. EC04/015). The BRIGHT study received

written ethical approval from The London Multicentre Research

Ethics Committee. The DCCT/EDIC study received written

ethical approval from The Hospital for Sick Children Research

Ethics Board.

Study subjects and SNP genotyping
The TwinsUK Study. Samples from the TwinsUK cohort

were genotyped with the Infinium assay (Illumina, San Diego,

USA) across three fully compatible SNP arrays, the Hap300 Duo,

Hap300, and Hap550 [53]. SNP calling was performed using the

Illuminus software [54]. SNPs were excluded if they violated

Hardy–Weinberg equilibrium (HWE) (p,1.061024); had

genotype call rates ,90%; or had a minor allele frequency

(MAF) of less than 0.01. Individuals were excluded if the sample

call rate was less than 95%, autosomal heterozygosity was not

between 33 and 37%, genotype concordance was over 97% with

another sample and the sample was of lesser call rate, non-

caucasian ancestry either self-identified or identified by cluster

analysis in STRUCTURE [55], or unexplained relatedness

(estimated proportion of allele shared identical by descent .0.05

[56]) to .120 other samples. This resulted in GWAS data being

available on 305,912 SNPs for 2,256 individuals from 595

dizygotic (DZ) twin pairs and 1066 singletons (among them

twins from monozygotic (MZ) twin pairs) from the TwinsUK

cohort. This cohort was previously shown to be representative of

the general (singleton) UK population [57]. ECG data were

available on 1,104 of these individuals. Eight hundred and sixty

had automated measurements of the QT interval by the Cardiofax

ECG-9020K (Nihon Kohden UK Ltd., Middlesex, UK) and 244

were scored manually using a high-resolution digitizing board

(GTCO CalComp Peripherals, USA).

Fifty six individuals were removed from the data set because of

atrial fibrillation, QRS duration .120 ms or presence of a heart

condition (i.e. ischemic heart disease, stroke or bypass surgery). None

of the genotyped twins had a pacemaker or used anti-arrhythmic

drugs. The dataset for analyses consequently included 1,048

individuals, of which 588 were DZ twins (i.e. 294 pairs) and 460

singletons. These singletons included 235 MZ twins of which the

mean QT interval of both twins was used to optimise information.

The BRIGHT study. Two thousand unrelated white European

hypertensive individuals from the BRIGHT study (www.brightstudy.

ac.uk) were genotyped with the GeneChip Human Mapping 500K

Array Set (Affymetrix). Only individuals and SNPs passing WTCCC

thresholds for quality control [58] were included in the analysis.

Briefly, individuals were excluded if they had .3% missing data or

evidence of non-Caucasian ancestry under Eigenstrat analysis [59].

SNPs were excluded if they showed deviation from HWE

(p,561027), high levels of missing data (capture rate ,95%) or

low MAF (,1%). Twelve-lead ECG recordings (Siemens-Sicard 440;

http://www.brightstudy.ac.uk/info/sop04.html), which produces an

automated measurement of the QT interval, were available for all

subjects. All data were transferred from each recruitment centre by

electronic modem to electrophysiologists from the West of Scotland

Primary Prevention Study (Professor Peter MacFarlane) for central

reporting. Thirteen hundred and ninety two individuals remained in

the analysis after exclusion of those having ischemic disease, stroke, or

bypass, atrial fibrillation, or QRS duration .120 ms and having full

covariate information.

The DCCT/EDIC Study. The Diabetes Control and

Complicatons Trial (DCCT)/Epidemiology of Diabetes

Interventions and Complications (EDIC) study was a clinical

trial and follow-up of subjects with type 1 diabetes. Fourteen

hundred forty one patients with type 1 diabetes were recruited for

the DCCT [60] and followed-up in EDIC [61]. Genome-wide

genotyping in subjects from the DCCT/EDIC was performed

using the Illumina 1 M beadchip assay (Illumina, San Diego,

USA) of which 841,342 SNPs with a MAF.1% were subsequently

analyzed statistically. Autosomal SNPs showing significant

association with gender (p,1028) or deviating from HWE

(p,1028) were excluded from the analysis. To reduce the

possibility of population stratification, we limited the analysis to

individuals who self-identified as white, and excluded individuals

who were determined to be admixed between Caucasian and

other ethnic groups through population genetic approaches, using

Eigenstrat [59] seeding with genotype data from the three major

populations genotyped in HapMap Phase II [62].

Twelve-lead resting ECGs were obtained by a certified

technician or research nurse at 29 clinics, measured digitally and

read according to the revised Minnesota Code at the Central ECG

Reading Unit (University of Minnesota, under the direction of Dr.

Richard S. Crow) [63]. In brief, at least 1 full min of ECG tracing

was obtained consisting of 5 s of each of the leads (I, II, III,

aVR,aVL, aVF, and V1–V6). Additionally, individuals having

ischemic disease, stroke, or bypass, atrial fibrillation, or QRS

duration .120 ms were excluded, therefore in total 323

individuals were excluded from the analysis.

Imputation
As all three cohorts used different platforms for genome wide

genotyping, non-genotyped autosomal SNPs were imputed. For

TwinsUK and BRIGHT individuals imputation was performed

using Phase II CEU HapMap data (release 22, build 36) as the

reference database using IMPUTE version 0.3.2 [64]. For

DCCT/EDIC individuals imputation was performed using Phase

II CEU HapMap data (release 22, build 36) using MACH v 1.0.16

[62,65].

Statistical Analyses
Using regression analysis, we adjusted QT interval for RR

interval, age, sex, height, body mass index, hypertension, and QT

interval shortening or prolonging drugs (if available) within each

cohort. For the TwinsUK sample, an extra covariate for the

method of measurement (automatically vs. manually scored) of the

QT interval was incorporated. Standardized QT interval residuals

were used for further analyses. For the TwinsUK and BRIGHT

cohorts, association between standardized corrected QT interval

data and autosomal SNPs was tested with an F-test in SNPTEST

version 1.1.4 using an additive model and the proper option to

account for the uncertainty of the genotypes that were imputed

[64]. As the TwinsUK cohort data consisted partly of dizygotic

twins, the variances of the regression coefficients were corrected
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for the sibship relations using the Huber-White method for robust

variance estimation in R [66,67]. In the DCCT/EDIC cohort,

SNPs were tested for association with corrected QT interval using

an additive model in MACH2QTL version 1.04 [62,65]. Genomic

control was performed to check for population stratification [27].

A meta-analysis was conducted in R using the inverse variance-

weighted fixed effects method on the beta estimates relative to a

consistent reference allele to combine the results of TwinsUK,

BRIGHT, and DCCT/EDIC cohorts (own software). Only SNPs

with MAF.1%, P.1026 for the HWE test calculated using the

genotypes inferred after imputation by maximum likelihood

expectation and an imputation quality score reflecting the

observed by expected variance ratio .0.5 for TwinsUK and

BRIGHT (IMPUTE proper_info) and .0.3 for DCCT/EDIC

(MACH r2) were included in the analysis. Heterogeneity of

observed effects was tested by the Q test [33].

QTSCD and QTGEN ‘in silico’ cohorts: description,
genotyping and analysis

The QTSCD consortium conducted a meta-analysis of results

of GWAS on QT interval from the ARIC, SardiNIA, KORA,

GenNOVA and HNR cohorts comprising in total 15,842

individuals (in press [26]). The QTGEN consortium combined

the results of GWAS on QT interval from the Framingham Heart

Study, the Rotterdam Study, and the Cardiovascular Health study

in a meta-analysis including in total 13,685 individuals (in press

[25]). Both studies imputed genotype data in order to facilitate the

comparison of genotyping results across different platforms.

Further details of materials and methods of both consortia can

be found elsewhere (in press [25,26]).

We performed a meta-analysis combining our results with those

of the QTSCD and the QTGEN consortia for our five most

statistically significant independent SNPs using methods as

described above.

Supporting Information

Figure S1 PLN protein-protein interaction network. This

protein-protein interaction network was generated by the

STRING program (http://string.embl.de) after querying the

PLN gene using a high confidence score (0.700). Data supporting

the interactions illustrated were derived from experimental studies

(purple lines), databases (blue lines) and text mining (green lines).

The genes that are involved in the calcium signaling pathway are

indicated in red, the nodes with purple stars indicate the genes that

are associated with cardiovascular diseases as based on functional

annotation by DAVID (http://david.abcc.ncifcrf.gov). Only for

large nodes are 3D protein structures available in STRING. The

colour of the nodes does not encode any information.

Found at: doi:10.1371/journal.pone.0006138.s001 (0.22 MB

DOC)

Figure S2 PLN co-expression network. This network is retrieved

from the gene co-expression database COXPRESdb (http://

coxpresdb.hgc.jp) using the PLN Entrez ID (5350) as the query.

The co-expression network is drawn based on rank of correlation

from 123 Human microarray experiments released by the NCBI

GEO database. The bold grey lines indicate average ranks from 1

to 4. The normal light gray lines indicate average ranks from 5 to

29. The orange lines indicate conserved co-expression based on

evidence from the NCBI HomoloGene database and COX-

PRESdb. The gene names in red indicate muscle or heart specific

expression and nodes with purple stars refer to genes that are

associated with cardiovascular diseases as based on functional

annotation by DAVID (http://david.abcc.ncifcrf.gov). For large

nodes 3D protein structures are available in STRING. The colour

of the nodes does not encode any information.

Found at: doi:10.1371/journal.pone.0006138.s002 (0.13 MB

DOC)

Figure S3 Tissue-specific expression of PLN. (source: co-

expressed gene database COXPRESdb: http://coxpresdb.hgc.jp.

Calculation is based on the 123 human microarray experiments

released by NCBI GEO version 7.)

Found at: doi:10.1371/journal.pone.0006138.s003 (0.04 MB

DOC)

Table S1 All SNPs with p,10–6 for the additive model from the

meta-analysis of the TwinsUK, BRIGHT and DCCT/EDIC

cohorts.

Found at: doi:10.1371/journal.pone.0006138.s004 (0.05 MB

XLS)

Table S2 Most significant SNPs from the meta-analysis of

TwinsUK, BRIGHT and DCCT/EDIC cohorts within an area

20 kb upstream and downstream of the 11 known candidate genes

for LQTS and SQTS.

Found at: doi:10.1371/journal.pone.0006138.s005 (0.04 MB

DOC)

Appendix S1 Consortium members and affiliations

Found at: doi:10.1371/journal.pone.0006138.s006 (0.06 MB

DOC)
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