520 research outputs found
Multivariate Anisotropic Interpolation on the Torus
We investigate the error of periodic interpolation, when sampling a function
on an arbitrary pattern on the torus. We generalize the periodic Strang-Fix
conditions to an anisotropic setting and provide an upper bound for the error
of interpolation. These conditions and the investigation of the error
especially take different levels of smoothness along certain directions into
account
Recommended from our members
The Role of Short-Termism and Uncertainty Avoidance in Organizational Inaction on Climate Change: A Multi-Level Framework
Despite increasing pressure to deal with climate change, firms have been slow to respond with effective action. This article presents a multi-level framework for a better understanding of why many firms are failing to reduce their absolute greenhouse gas emissions, which contribute to climate change. The concepts of short-termism and uncertainty avoidance from research in psychology, sociology, and organization theory can explain the phenomenon of organizational inaction on climate change. Antecedents related to short-termism and uncertainty avoidance reinforce one another at three levels—individual, organizational, and institutional—and result in organizational inaction on climate change. The article also discusses the implications of this multi-level framework for research on corporate sustainability
Characterization of infectious and defective cloned avian hepadnavirus genomes
The infectivity in vivo, replication competence in vitro, and expression of viral genes of several molecularly cloned duck hepatitis B virus (DHBV) genomes were investigated. In addition, replication competence, core protein expression, and secretion of viral proteins were investigated for a grey heron hepatitis B virus genome. Except two, all DHBV isolates tested induced a systemic infection in Pekin ducks when injected as cloned viral DNA into the liver. After transfection of chicken hepatoma cells, both defective DHBV genomes expressed intracellular nucleocapsid and pre-S envelope proteins and secreted DHBs/pre-S particles into the medium. One of the defective DHBV genomes and HHBV produced within the cells replicative intermediates encapsidated in core particles and secreted virions, whereas the other defective DHBV genome did not and was unable to efficiently encapsidate the RNA pregenome. Comparative sequence analysis was performed to identify potential amino acid changes in viral proteins of both defective DHBV genomes. The data obtained demonstrate that most cloned avian hepadnaviruses are infectious or replication competent and suggest defects in envelope, polymerase or encapsidation function, respectively, in two cloned DHBV genomes
Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom
The late stage of the North East Atlantic (NEA) spring bloom was investigated during June 2005 along a transect section from 45 to 66&deg; N between 15 and 20&deg; W in order to characterize the contribution of siliceous and calcareous phytoplankton groups and describe their distribution in relation to environmental factors. We measured several biogeochemical parameters such as nutrients, surface trace metals, algal pigments, biogenic silica (BSi), particulate inorganic carbon (PIC) or calcium carbonate, particulate organic carbon, nitrogen and phosphorus (POC, PON and POP, respectively), as well as transparent exopolymer particles (TEP). Results were compared with other studies undertaken in this area since the JGOFS NABE program. Characteristics of the spring bloom generally agreed well with the accepted scenario for the development of the autotrophic community. The NEA seasonal diatom bloom was in the late stages when we sampled the area and diatoms were constrained to the northern part of our transect, over the Icelandic Basin (IB) and Icelandic Shelf (IS). Coccolithophores dominated the phytoplankton community, with a large distribution over the Rockall-Hatton Plateau (RHP) and IB. The Porcupine Abyssal Plain (PAP) region at the southern end of our transect was the region with the lowest biomass, as demonstrated by very low Chl<i>a</i> concentrations and a community dominated by picophytoplankton. Early depletion of dissolved silicic acid (DSi) and increased stratification of the surface layer most likely triggered the end of the diatom bloom, leading to coccolithophore dominance. The chronic Si deficiency observed in the NEA could be linked to moderate Fe limitation, which increases the efficiency of the Si pump. TEP closely mirrored the distribution of both biogenic silica at depth and prymnesiophytes in the surface layer suggesting the sedimentation of the diatom bloom in the form of aggregates, but the relative contribution of diatoms and coccolithophores to carbon export in this area still needs to be resolved
Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival
Myelin, made by oligodendrocytes, is essential for rapid information transfer in the central nervous system. Oligodendrocyte precursors (OPs) receive glutamatergic synaptic input from axons but how this affects their development is unclear. Murine OPs in white matter express AMPA receptor (AMPAR) subunits GluA2, GluA3 and GluA4. We generated mice in which OPs lack both GluA2 and GluA3, or all three subunits GluA2/3/4, which respectively reduced or abolished AMPAR-mediated input to OPs. In both double- and triple-knockouts OP proliferation and number were unchanged but ~25% fewer oligodendrocytes survived in the subcortical white matter during development. In triple knockouts, this shortfall persisted into adulthood. The oligodendrocyte deficit resulted in ~20% fewer myelin sheaths but the average length, number and thickness of myelin internodes made by individual oligodendrocytes appeared normal. Thus, AMPAR-mediated signalling from active axons stimulates myelin production in developing white matter by enhancing oligodendrocyte survival, without influencing myelin synthesis per se.</p
OA03.04. An assessment of the effectiveness of acupuncture for the Trauma Spectrum Response: results of a rapid evidence assessment of the literature (REAL)
Knockout of NMDA-receptors from parvalbumin interneurons sensitizes to schizophrenia-related deficits induced by MK-801
It has been suggested that a functional deficit in NMDA-receptors (NMDARs) on parvalbumin (PV)-positive interneurons (PV-NMDARs) is central to the pathophysiology of schizophrenia. Supportive evidence come from examination of genetically modified mice where the obligatory NMDAR-subunit GluN1 (also known as NR1) has been deleted from PV interneurons by Cre-mediated knockout of the corresponding gene Grin1 (Grin1(ΔPV) mice). Notably, such PV-specific GluN1 ablation has been reported to blunt the induction of hyperlocomotion (a surrogate for psychosis) by pharmacological NMDAR blockade with the non-competitive antagonist MK-801. This suggests PV-NMDARs as the site of the psychosis-inducing action of MK-801. In contrast to this hypothesis, we show here that Grin1(ΔPV) mice are not protected against the effects of MK-801, but are in fact sensitized to many of them. Compared with control animals, Grin1(ΔPV)mice injected with MK-801 show increased stereotypy and pronounced catalepsy, which confound the locomotor readout. Furthermore, in Grin1(ΔPV)mice, MK-801 induced medial-prefrontal delta (4 Hz) oscillations, and impaired performance on tests of motor coordination, working memory and sucrose preference, even at lower doses than in wild-type controls. We also found that untreated Grin1(ΔPV)mice are largely normal across a wide range of cognitive functions, including attention, cognitive flexibility and various forms of short-term memory. Taken together these results argue against PV-specific NMDAR hypofunction as a key starting point of schizophrenia pathophysiology, but support a model where NMDAR hypofunction in multiple cell types contribute to the disease
The group II metabotropic glutamate receptor agonist LY354740 and the D2 receptor antagonist haloperidol reduce locomotor hyperactivity but fail to rescue spatial working memory in GluA1 knockout mice.
Group II metabotropic glutamate receptor agonists have been suggested as potential anti-psychotics, at least in part, based on the observation that the agonist LY354740 appeared to rescue the cognitive deficits caused by non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonists, including spatial working memory deficits in rodents. Here, we tested the ability of LY354740 to rescue spatial working memory performance in mice that lack the GluA1 subunit of the AMPA glutamate receptor, encoded by Gria1, a gene recently implicated in schizophrenia by genome-wide association studies. We found that LY354740 failed to rescue the spatial working memory deficit in Gria1(-/-) mice during rewarded alternation performance in the T-maze. In contrast, LY354740 did reduce the locomotor hyperactivity in these animals to a level that was similar to controls. A similar pattern was found with the dopamine receptor antagonist haloperidol, with no amelioration of the spatial working memory deficit in Gria1(-/-) mice, even though the same dose of haloperidol reduced their locomotor hyperactivity. These results with LY354740 contrast with the rescue of spatial working memory in models of glutamatergic hypofunction using non-competitive NMDAR antagonists. Future studies should determine whether group II mGluR agonists can rescue spatial working memory deficits with other NMDAR manipulations, including genetic models and other pharmacological manipulations of NMDAR function
The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study
Background and Aims Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions. Methods The database was compiled from published and unpublished reports. Plants were categorized into broad pollination systems and then subdivided to include bimodal systems. These were mapped against the five major divisions of the family, and against the smaller clades. Finally, pollination systems were mapped onto a phylogenetic reconstruction that included those species for which sequence data are available, and transition rates between pollination systems were calculated. Key Results Most Apocynaceae are insect pollinated with few records of bird pollination. Almost three-quarters of species are pollinated by a single higher taxon (e.g. flies or moths); 7 % have bimodal pollination systems, whilst the remaining approx. 20 % are insect generalists. The less phenotypically specialized flowers of the Rauvolfioids are pollinated by a more restricted set of pollinators than are more complex flowers within the Apocynoids + Periplocoideae + Secamonoideae + Asclepiadoideae (APSA) clade. Certain combinations of bimodal pollination systems are more common than others. Some pollination systems are missing from particular regions, whilst others are over-represented. Conclusions Within Apocynaceae, interactions with pollinators are highly structured both phylogenetically and biogeographically. Variation in transition rates between pollination systems suggest constraints on their evolution, whereas regional differences point to environmental effects such as filtering of certain pollinators from habitats. This is the most extensive analysis of its type so far attempted and gives important insights into the diversity and evolution of pollination systems in large clades
- …
