226 research outputs found

    Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment

    Get PDF
    Little is known about the biochemical environment in phagosomes harboring an infectious agent. To assess the state of this organelle we captured the transcriptional responses of Mycobacterium tuberculosis (MTB) in macrophages from wild-type and nitric oxide (NO) synthase 2–deficient mice before and after immunologic activation. The intraphagosomal transcriptome was compared with the transcriptome of MTB in standard broth culture and during growth in diverse conditions designed to simulate features of the phagosomal environment. Genes expressed differentially as a consequence of intraphagosomal residence included an interferon � – and NO-induced response that intensifies an iron-scavenging program, converts the microbe from aerobic to anaerobic respiration, and induces a dormancy regulon. Induction of genes involved in the activation and �-oxidation of fatty acids indicated that fatty acids furnish carbon and energy. Induction of �E-dependent, sodium dodecyl sulfate–regulated genes and genes involved in mycolic acid modification pointed to damage and repair of the cell envelope. Sentinel genes within the intraphagosomal transcriptome were induced similarly by MTB in the lungs of mice. The microbial transcriptome thus served as a bioprobe of the MTB phagosomal environment

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development.

    Get PDF
    The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development

    Central metabolism in Mycobacterium smegmatis during the transition from O2-rich to O2-poor conditions as studied by isotopomer-assisted metabolite analysis

    Get PDF
    Isotopomer-assisted metabolite analysis was used to investigate the central metabolism of Mycobacterium smegmatis and its transition from normal growth to a non-replicating state under a hypoxic environment. Tween 80 significantly promoted aerobic growth by improving O2 transfer, while only small amount was degraded and metabolized via the TCA cycle for biomass synthesis. As the bacillus encountered hypoxic stress, isotopomer analysis suggested: (1) isocitrate lyase activity increased, which further induced glyoxylate pathway and glycine dehydrogenase for replenishing NAD+; (2) the relative amount of acetyl-CoA entering the TCA cycle was doubled, whereas little entered the glycolytic and pentose phosphate pathways

    Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection

    Get PDF
    Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes. © 2014 Gouzy et al

    Nitrate Respiration Protects Hypoxic Mycobacterium tuberculosis Against Acid- and Reactive Nitrogen Species Stresses

    Get PDF
    There are strong evidences that Mycobacterium tuberculosis survives in a non-replicating state in the absence of oxygen in closed lesions and granuloma in vivo. In addition, M. tuberculosis is acid-resistant, allowing mycobacteria to survive in acidic, inflamed lesions. The ability of M. tuberculosis to resist to acid was recently shown to contribute to the bacillus virulence although the mechanisms involved have yet to be deciphered. In this study, we report that M. tuberculosis resistance to acid is oxygen-dependent; whereas aerobic mycobacteria were resistant to a mild acid challenge (pH 5.5) as previously reported, we found microaerophilic and hypoxic mycobacteria to be more sensitive to acid. In hypoxic conditions, mild-acidity promoted the dissipation of the protonmotive force, rapid ATP depletion and cell death. Exogenous nitrate, the most effective alternate terminal electron acceptor after molecular oxygen, protected hypoxic mycobacteria from acid stress. Nitrate-mediated resistance to acidity was not observed for a respiratory nitrate reductase NarGH knock-out mutant strain. Furthermore, we found that nitrate respiration was equally important in protecting hypoxic non-replicating mycobacteria from radical nitrogen species toxicity. Overall, these data shed light on a new role for nitrate respiration in protecting M. tuberculosis from acidity and reactive nitrogen species, two environmental stresses likely encountered by the pathogen during the course of infection

    Significance analysis of microarray for relative quantitation of LC/MS data in proteomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fold change is a commonly used criterion in quantitative proteomics for differentiating regulated proteins, it does not provide an estimation of false positive and false negative rates that is often desirable in a large-scale quantitative proteomic analysis. We explore the possibility of applying the Significance Analysis of Microarray (SAM) method (PNAS 98:5116-5121) to a differential proteomics problem of two samples with replicates. The quantitative proteomic analysis was carried out with nanoliquid chromatography/linear iron trap-Fourier transform mass spectrometry. The biological sample model included two <it>Mycobacterium smegmatis </it>unlabeled cell cultures grown at pH 5 and pH 7. The objective was to compare the protein relative abundance between the two unlabeled cell cultures, with an emphasis on significance analysis of protein differential expression using the SAM method. Results using the SAM method are compared with those obtained by fold change and the conventional <it>t</it>-test.</p> <p>Results</p> <p>We have applied the SAM method to solve the two-sample significance analysis problem in liquid chromatography/mass spectrometry (LC/MS) based quantitative proteomics. We grew the pH5 and pH7 unlabelled cell cultures in triplicate resulting in 6 biological replicates. Each biological replicate was mixed with a common <sup>15</sup>N-labeled reference culture cells for normalization prior to SDS/PAGE fractionation and LC/MS analysis. For each biological replicate, one center SDS/PAGE gel fraction was selected for triplicate LC/MS analysis. There were 121 proteins quantified in at least 5 of the 6 biological replicates. Of these 121 proteins, 106 were significant in differential expression by the <it>t</it>-test (<it>p </it>< 0.05) based on peptide-level replicates, 54 were significant in differential expression by SAM with Δ = 0.68 cutoff and false positive rate at 5%, and 29 were significant in differential expression by the <it>t</it>-test (<it>p </it>< 0.05) based on protein-level replicates. The results indicate that SAM appears to overcome the false positives one encounters using the peptide-based <it>t</it>-test while allowing for identification of a greater number of differentially expressed proteins than the protein-based <it>t</it>-test.</p> <p>Conclusion</p> <p>We demonstrate that the SAM method can be adapted for effective significance analysis of proteomic data. It provides much richer information about the protein differential expression profiles and is particularly useful in the estimation of false discovery rates and miss rates.</p

    RNA profiling in host-pathogen interactions

    Get PDF
    The development of novel anti-bacterial treatment strategies will be aided by an increased understanding of the interactions that take place between bacteria and host cells during infection. Global expression profiling using microarray technologies can help to describe and define the mechanisms required by bacterial pathogens to cause disease and the host responses required to defeat bacterial infection
    corecore