6,058 research outputs found
Late quaternary time series of Arabian Sea productivity: Global and regional signals
Modern annual floral and faunal production in the northwest Arabian Sea derives primarily from upwelling induced by strong southwest winds during June, July, and August. Indian Ocean summer monsoon winds are, in turn, driven by differential heating between the Asian continent and the Indian ocean to the south. This differential heating produces a strong pressure gradient resulting in southwest monsoon winds and both coastal and divergent upwelling off the Arabian Peninsula. Over geologic time scales (10(exp 4) to 10(exp 6) years), monsoon wind strength is sensitive to changes in boundary conditions which influence this pressure gradient. Important boundary conditions include the seasonal distribution of solar radiation, global ice volume, Indian Ocean sea surface temperature, and the elevation and albedo of the Asian continent. To the extent that these factors influence monsoon wind strength, they also influence upwelling and productivity. In addition, however, productivity associated with upwelling can be decoupled from the strength of the summer monsoon winds via ocean mechanisms which serve to inhibit or enhance the nutrient supply in the intermediate waters of the Indian Ocean, the source for upwelled waters in the Arabian Sea. To differentiate productivity associated with wind-induced upwelling from that associated with other components of the system such as nutrient sequestering in glacial-age deep waters, we employ a strategy which monitors independent components of the oceanic and atmospheric subsystems. Using sediment records from the Owen Ridge, northwest Arabian Sea, we monitor the strength of upwelling and productivity using two independent indicators, percent G. bulloides and opal accumulation. We monitor the strength of southwest monsoon winds by measuring the grain-size of lithogenic dust particles blown into the Arabian Sea from the surrounding deserts of the Somali and Arabian Peninsulas. Our current hypothesis is that the variability associated with the 41 kyr power in the G. bulloides and opal accumulation records derive from nutrient availability in the intermediate waters which are upwelled via monsoon winds. This hypothesis is testable by comparison with Cd records of intermediate and deep waters of the Atlantic and Indian Ocean
Direct and Simultaneous Observation of Ultrafast Electron and Hole Dynamics in Germanium
Understanding excited carrier dynamics in semiconductors is crucial for the
development of photovoltaics and efficient photonic devices. However,
overlapping spectral features in optical/NIR pump-probe spectroscopy often
render assignments of separate electron and hole carrier dynamics ambiguous.
Here, ultrafast electron and hole dynamics in germanium nanocrystalline thin
films are directly and simultaneously observed by attosecond transient
absorption spectroscopy (ATAS) in the extreme ultraviolet at the germanium
M_{4,5}-edge (~30 eV). We decompose the ATAS spectra into contributions of
electronic state blocking and photo-induced band shifts at a carrier density of
8*10^{20}cm^{-3}. Separate electron and hole relaxation times are observed as a
function of hot carrier energies. A first order electron and hole decay of ~1
ps suggests a Shockley-Read-Hall recombination mechanism. The simultaneous
observation of electrons and holes with ATAS paves the way for investigating
few to sub-femtosecond dynamics of both holes and electrons in complex
semiconductor materials and across junctions.Comment: Includes Supplementary Informatio
Observation of the Dynamic Beta Effect at CESR with CLEO
Using the silicon strip detector of the CLEO experiment operating at the
Cornell Electron-positron Storage Ring (CESR), we have observed that the
horizontal size of the luminous region decreases in the presence of the
beam-beam interaction from what is expected without the beam-beam interaction.
The dependence on the bunch current agrees with the prediction of the dynamic
beta effect. This is the first direct observation of the effect.Comment: 9 page uuencoded postscript file, postscritp file also available
through http://w4.lns.cornell.edu/public/CLNS, submitted to Phys. Rev.
Sea surface temperature changes in the southern California borderlands during the last glacial-interglacial cycle
A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal δ18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial
Measurement of Branching Fractions and Rate Asymmetries in the Rare Decays B -> K(*) l+ l-
In a sample of 471 million BB events collected with the BABAR detector at the
PEP-II e+e- collider we study the rare decays B -> K(*) l+ l-, where l+ l- is
either e+e- or mu+mu-. We report results on partial branching fractions and
isospin asymmetries in seven bins of di-lepton mass-squared. We further present
CP and lepton-flavor asymmetries for di-lepton masses below and above the J/psi
resonance. We find no evidence for CP or lepton-flavor violation. The partial
branching fractions and isospin asymmetries are consistent with the Standard
Model predictions and with results from other experiments.Comment: 16 pages, 14 figures, accepted by Phys. Rev.
Improved Limits on decays to invisible final states
We establish improved upper limits on branching fractions for B0 decays to
final States 10 where the decay products are purely invisible (i.e., no
observable final state particles) and for final states where the only visible
product is a photon. Within the Standard Model, these decays have branching
fractions that are below the current experimental sensitivity, but various
models of physics beyond the Standard Model predict significant contributions
for these channels. Using 471 million BB pairs collected at the Y(4S) resonance
by the BABAR experiment at the PEP-II e+e- storage ring at the SLAC National
Accelerator Laboratory, we establish upper limits at the 90% confidence level
of 2.4x10^-5 for the branching fraction of B0-->Invisible and 1.7x10^-5 for the
branching fraction of B0-->Invisible+gammaComment: 8 pages, 3 postscript figures, submitted to Phys. Rev. D (Rapid
Communications
Limit on the Two-Photon Production of the Glueball Candidate at CLEO
We use the CLEO detector at the Cornell electron-positron storage ring, CESR,
to search for the two-photon production of the glueball candidate f_J(2220) in
its decay to K_s K_s. We present a restrictive upper limit on the product of
the two-photon partial width and the K_s K_s branching fraction. We use this
limit to calculate a lower limit on the stickiness, which is a measure of the
two-gluon coupling relative to the two-photon coupling. This limit on
stickiness indicates that the f_J(2220) has substantial glueball content.Comment: 9 page postscript file, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Recommended from our members
Precise Measurement of the e+ e- --> pi+ pi- (gamma) Cross Section with the Initial-State Radiation Method at BABAR
A precise measurement of the cross section of the process
from threshold to an energy of 3GeV is obtained
with the initial-state radiation (ISR) method using 232fb of data
collected with the BaBar detector at center-of-mass energies near
10.6GeV. The ISR luminosity is determined from a study of the leptonic process
, which is found to agree with the
next-to-leading-order QED prediction to within 1.1%. The cross section for the
process is obtained with a systematic uncertainty
of 0.5% in the dominant resonance region. The leading-order hadronic
contribution to the muon magnetic anomaly calculated using the measured
cross section from threshold to 1.8GeV is .Comment: 58 pages, 56 figures, to be submitted to Phys. Rev.
Zinc(II) coordination polymers with pseudopeptidic ligands
Two new phenyl-bridged pseudopeptidic ligands have been prepared and structurally characterised. The nature of the ligands’ substituents play an important role in the nature of the solid state structure yielding either hydrogen bonded linked sheets of molecules or infinite hydrogen bonded networks. Both these ligands were reacted with a range of zinc(II) salts with the aim of synthesising coordination polymers and networks and exploring the role that anions could play in determining the final structure. The crystal structures of four of these systems (with ZnSO4 and ZnBr2) were determined; in one case, a 3D coordination network was obtained where zinc–ligand coordination bonds generated the 3D arrangements. Three other 3D networks were obtained by anion-mediated hydrogen bonding of coordination 1D chains or 2D sheets. These four very different structures highlight the important role played by the ligands’ substituents and the counteranions present in the system
- …
