228 research outputs found

    First-principles embedded-cluster calculations of the neutral and charged oxygen vacancy at the rutile TiO<sub>2</sub>(110) surface

    Get PDF
    We perform full-potential screened-hybrid density-functional theory calculations to compare the thermodynamic stability of neutral and charged states of the surface oxygen vacancy at the rutile TiO2(110) surface. Solid-state (QM/MM) embedded-cluster calculations are employed to account for the strong TiO2 polarization response to the charged defect states. Similarly to the situation for the bulk O vacancy, the +2 charge state VO2+ is found to be energetically by far the most stable. Only for Fermi-level positions very close to the conduction band, small polarons may at best be trapped by the charged vacancy. The large decrease in the VO2+ formation energy with decreasing Fermi-level position indicates strongly enhanced surface O vacancy concentrations for p-doped samples

    Equilibrium Sampling From Nonequilibrium Dynamics

    Full text link
    We present some applications of an Interacting Particle System (IPS) methodology to the field of Molecular Dynamics. This IPS method allows several simulations of a switched random process to keep closer to equilibrium at each time, thanks to a selection mechanism based on the relative virtual work induced on the system. It is therefore an efficient improvement of usual non-equilibrium simulations, which can be used to compute canonical averages, free energy differences, and typical transitions paths

    \AA ngstrom depth resolution with chemical specificity at the liquid-vapor interface

    Full text link
    The determination of depth profiles across interfaces is of primary importance in many scientific and technological areas. Photoemission spectroscopy is in principle well suited for this purpose, yet a quantitative implementation for investigations of liquid-vapor interfaces is hindered by the lack of understanding of electron-scattering processes in liquids. Previous studies have shown, however, that core-level photoelectron angular distributions (PADs) are altered by depth-dependent elastic electron scattering and can, thus, reveal information on the depth distribution of species across the interface. Here, we explore this concept further and show that the anisotropy parameter characterizing the PAD scales linearly with the average distance of atoms along the surface normal. This behavior can be accounted for in the low-collision-number regime. We also show that results for different atomic species can be compared on the same length scale. We demonstrate that atoms separated by about 1~\AA~along the surface normal can be clearly distinguished with this method, achieving excellent depth resolution.Comment: Submitted to Phys. Rev. Let

    Tc-knirps plays different roles in the specification of antennal and mandibular parasegment boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum

    Get PDF
    Background: The Drosophila larval head is evolutionarily derived at the genetic and morphological level. In the beetle Tribolium castaneum, development of the larval head more closely resembles the ancestral arthropod condition. Unlike in Drosophila, a knirps homologue (Tc-kni) is required for development of the antennae and mandibles. However, published Tc-kni data are restricted to cuticle phenotypes and Tc-even-skipped and Tc-wingless stainings in knockdown embryos. Hence, it has remained unclear whether the entire antennal and mandibular segments depend on Tc-kni function, and whether the intervening intercalary segment is formed completely. We address these questions with a detailed examination of Tc-kni function. Results: By examining the expression of marker genes in RNAi embryos, we show that Tc-kni is required only for the formation of the posterior parts of the antennal and mandibular segments (i.e. the parasegmental boundaries). Moreover, we find that the role of Tc-kni is distinct in these segments: Tc-kni is required for the initiation of the antennal parasegment boundary, but only for the maintenance of the mandibular parasegmental boundary. Surprisingly, Tc-kni controls the timing of expression of the Hox gene Tc-labial in the intercalary segment, although this segment does form in the absence of Tc-kni function. Unexpectedly, we find that the pair-rule gene Tc-even-skipped helps set the posterior boundary of Tc-kni expression in the mandible. Using the mutant antennaless, a likely regulatory Null mutation at the Tc-kni locus, we provide evidence that our RNAi studies represent a Null situation. Conclusions: Tc-kni is required for the initiation of the antennal and the maintenance of the mandibular parasegmental boundaries. Tc-kni is not required for specification of the anterior regions of these segments, nor the intervening intercalary segment, confirming that Tc-kni is not a canonical 'gap-gene'. Our finding that a gap gene orthologue is regulated by a pair rule gene adds to the view that the segmentation gene hierarchies differ between Tribolium and Drosophila upstream of the pair rule gene level. In Tribolium, as in Drosophila, head and trunk segmentation gene networks cooperate to pattern the mandibular segment, albeit involving Tc-kni as novel component

    Medial gastrocnemius muscle stiffness cannot explain the increased ankle joint range of motion following passive stretching in children with cerebral palsy.

    Get PDF
    Stretching is often used to increase/maintain joint range of motion (ROM) in children with cerebral palsy (CP) but the effectiveness of these interventions is limited. Therefore, this study aimed to determine the acute changes in muscle-tendon lengthening properties that contribute to increased ROM after a bout of stretching in children with CP. Eleven children with spastic CP (age:12.1(3)y, 5/6 hemiplegia/diplegia, 7/4 GMFCS level I/II) participated in this study. Each child received 3 sets of 5 × 20 s passive, manual static dorsiflexion stretches separated by 30 s rest, and 60 s rest between sets. Pre- and immediately post-stretching, ultrasound was used to measure medial gastrocnemius fascicle lengthening continuously over the full ROM and an individual common ROM pre- to post-stretching. Simultaneously, 3D motion of two marker clusters on the shank and the foot was captured to calculate ankle angle, and ankle joint torque was calculated from manually applied torques and forces on a 6DoF load cell. After stretching, ROM was increased (9.9° (12.0), P = 0.005). Over a ROM common to both pre and post measurements, there were no changes in fascicle lengthening or torque. The maximal ankle joint torque tolerated by the participants increased (2.9(2.4) Nm, P = 0.003) and at this highest passive torque maximal fascicle length was 2.8(2.4) mm greater (P = 0.009) when compared to before stretching. These results indicate that the stiffness of the muscle fascicles in children with CP remain unaltered by an acute bout of stretching. This article is protected by copyright. All rights reserved

    Enhanced genome assembly and a new official gene set for Tribolium castaneum

    Get PDF
    Background. The red flour beetle Tribolium castaneum has emerged as an important model organism for the study of gene function in development and physiology, for ecological and evolutionary genomics, for pest control and a plethora of other topics. RNA interference (RNAi), transgenesis and genome editing are well established and the resources for genome-wide RNAi screening have become available in this model. All these techniques depend on a high quality genome assembly and precise gene models. However, the first version of the genome assembly was generated by Sanger sequencing, and with a small set of RNA sequence data limiting annotation quality. Results. Here, we present an improved genome assembly (Tcas5.2) and an enhanced genome annotation resulting in a new official gene set (OGS3) for Tribolium castaneum, which significantly increase the quality of the genomic resources. By adding large-distance jumping library DNA sequencing to join scaffolds and fill small gaps, the gaps in the genome assembly were reduced and the N50 increased to 4753kbp. The precision of the gene models was enhanced by the use of a large body of RNA-Seq reads of different life history stages and tissue types, leading to the discovery of 1452 novel gene sequences. We also added new features such as alternative splicing, well defined UTRs and microRNA target predictions. For quality control, 399 gene models were evaluated by manual inspection. The current gene set was submitted to Genbank and accepted as a RefSeq genome by NCBI. Conclusions. The new genome assembly (Tcas5.2) and the official gene set (OGS3) provide enhanced genomic resources for genetic work in Tribolium castaneum. The much improved information on transcription start sites supports transgenic and gene editing approaches. Further, novel types of information such as splice variants and microRNA target genes open additional possibilities for analysis

    The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species

    Get PDF
    The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control
    • …
    corecore