158 research outputs found

    Aminoglycoside Resistance Rates, Phenotypes, and Mechanisms of Gram-Negative Bacteria from Infected Patients in Upper Egypt

    Get PDF
    With the re-emergence of older antibiotics as valuable choices for treatment of serious infections, we studied the aminoglycoside resistance of Gram-negative bacteria isolated from patients with ear, urinary tract, skin, and gastrointestinal tract infections at Minia university hospital in Egypt. Escherichia coli (mainly from urinary tract and gastrointestinal tract infections) was the most prevalent isolate (28.57%), followed by Pseudomonas aeruginosa (25.7%) (mainly from ear discharge and skin infections). Isolates exhibited maximal resistance against streptomycin (83.4%), and minimal resistance against amikacin (17.7%) and intermediate degrees of resistance against neomycin, kanamycin, gentamicin, and tobramycin. Resistance to older aminoglycosides was higher than newer aminoglycoides. The most common aminoglycoside resistance phenotype was that of streptomycin resistance, present as a single phenotype or in combination, followed by kanamycin-neomycin as determined by interpretative reading. The resistant Pseudomonas aeruginosa strains were capable of producing aminoglycoside-modifying enzymes and using efflux as mechanisms of resistance. Using checkerboard titration method, the most frequently-observed outcome in combinations of aminoglycosides with β-lactams or quinolones was synergism. The most effective combination was amikacin with ciprofloxacin (100% Synergism), whereas the least effective combination was gentamicin with amoxicillin (53.3% Synergistic, 26.7% additive, and 20% indifferent FIC indices). Whereas the studied combinations were additive and indifferent against few of the tested strains, antagonism was never observed. The high resistance rates to aminoglycosides exhibited by Gram-negative bacteria in this study could be attributed to the selective pressure of aminoglycoside usage which could be controlled by successful implementation of infection control measures

    Two-dimensional combinatorial screening and the RNA Privileged Space Predictor program efficiently identify aminoglycoside–RNA hairpin loop interactions

    Get PDF
    Herein, we report the identification of RNA hairpin loops that bind derivatives of kanamycin A, tobramycin, neamine, and neomycin B via two-dimensional combinatorial screening, a method that screens chemical and RNA spaces simultaneously. An arrayed aminoglycoside library was probed for binding to a 6-nucleotide RNA hairpin loop library (4096 members). Members of the loop library that bound each aminoglycoside were excised from the array, amplified and sequenced. Sequences were analyzed with our newly developed RNA Privileged Space Predictor (RNA-PSP) program, which analyzes selected sequences to identify statistically significant trends. RNA-PSP identified the following unique trends: 5′UNNNC3′ loops for the kanamycin A derivative (where N is any nucleotide); 5′UNNC3′ loops for the tobramycin derivative; 5′UNC3′ loops for the neamine derivative; and 5′UNNG3′ loops for the neomycin B derivative. The affinities and selectivities of a subset of the ligand–hairpin loop interactions were determined. The selected interactions have Kd values ranging from 10 nM to 605 nM. Selectivities ranged from 0.4 to >200-fold. Interestingly, the results from RNA-PSP are able to qualitatively predict specificity based on overlap between the RNA sequences selected for the ligands. These studies expand the information available on small molecule–RNA motif interactions, which could be useful to design ligands targeting RNA

    Genome-Scale Identification Method Applied to Find Cryptic Aminoglycoside Resistance Genes in Pseudomonas aeruginosa

    Get PDF
    BACKGROUND:The ability of bacteria to rapidly evolve resistance to antibiotics is a critical public health problem. Resistance leads to increased disease severity and death rates, as well as imposes pressure towards the discovery and development of new antibiotic therapies. Improving understanding of the evolution and genetic basis of resistance is a fundamental goal in the field of microbiology. RESULTS:We have applied a new genomic method, Scalar Analysis of Library Enrichments (SCALEs), to identify genomic regions that, given increased copy number, may lead to aminoglycoside resistance in Pseudomonas aeruginosa at the genome scale. We report the result of selections on highly representative genomic libraries for three different aminoglycoside antibiotics (amikacin, gentamicin, and tobramycin). At the genome-scale, we show significant (p<0.05) overlap in genes identified for each aminoglycoside evaluated. Among the genomic segments identified, we confirmed increased resistance associated with an increased copy number of several genomic regions, including the ORF of PA5471, recently implicated in MexXY efflux pump related aminoglycoside resistance, PA4943-PA4946 (encoding a probable GTP-binding protein, a predicted host factor I protein, a delta 2-isopentenylpyrophosphate transferase, and DNA mismatch repair protein mutL), PA0960-PA0963 (encoding hypothetical proteins, a probable cold shock protein, a probable DNA-binding stress protein, and aspartyl-tRNA synthetase), a segment of PA4967 (encoding a topoisomerase IV subunit B), as well as a chimeric clone containing two inserts including the ORFs PA0547 and PA2326 (encoding a probable transcriptional regulator and a probable hypothetical protein, respectively). CONCLUSIONS:The studies reported here demonstrate the application of new a genomic method, SCALEs, which can be used to improve understanding of the evolution of antibiotic resistance in P. aeruginosa. In our demonstration studies, we identified a significant number of genomic regions that increased resistance to multiple aminoglycosides. We identified genetic regions that include open reading frames that encode for products from many functional categories, including genes related to O-antigen synthesis, DNA repair, and transcriptional and translational processes

    Genomics of high molecular weight plasmids isolated from an on-farm biopurification system

    Get PDF
    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.Acknowledgements: This work was supported by the European Commission’s 7th Framework Programme (project Metaexplore 222625), the National Scientific and Technical Research Council of Argentina (Consejo Nacional de Investigaciones Científicas y Técnicas—CONICET, Argentina) and Ministry of Science Technology and Productive Innovation (Ministerio de Ciencia Tecnolología e Innovación Productiva—MinCyT, Argentina), projects PICT2013-0113, PICT2012-518 and PICT 2012-1719). MCM, FJA were supported by fellowships from CONICET. MFDP, MP, ML, GTT and AL are researchers at CONICET. The bioinformatics support of the BMBF-funded project (grant 031A533) within the German Network for Bioinformatics Infrastructure (de.NBI) is gratefully acknowledged. Work in FdlC group was supported by grant “Plasmid Offensive” BFU2014-55534-C2-1-P from Ministerio de Economía y Competitividad (MINECO, Spain), and Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015/0019) from Instituto de Salud Carlos III (Spain)-co-financed by European Development Regional Fund. The authors are grateful to Paula Giménez and Silvana Tongiani for excellent technical assistance

    A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury

    Get PDF
    In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s)

    Phenotypic and Genome-Wide Analysis of an Antibiotic-Resistant Small Colony Variant (SCV) of Pseudomonas aeruginosa

    Get PDF
    Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5) on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system

    Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice

    Get PDF
    Background: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phageresistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD 50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophag

    Hepatic safety of antibiotics used in primary care

    Get PDF
    Antibiotics used by general practitioners frequently appear in adverse-event reports of drug-induced hepatotoxicity. Most cases are idiosyncratic (the adverse reaction cannot be predicted from the drug's pharmacological profile or from pre-clinical toxicology tests) and occur via an immunological reaction or in response to the presence of hepatotoxic metabolites. With the exception of trovafloxacin and telithromycin (now severely restricted), hepatotoxicity crude incidence remains globally low but variable. Thus, amoxicillin/clavulanate and co-trimoxazole, as well as flucloxacillin, cause hepatotoxic reactions at rates that make them visible in general practice (cases are often isolated, may have a delayed onset, sometimes appear only after cessation of therapy and can produce an array of hepatic lesions that mirror hepatobiliary disease, making causality often difficult to establish). Conversely, hepatotoxic reactions related to macrolides, tetracyclines and fluoroquinolones (in that order, from high to low) are much rarer, and are identifiable only through large-scale studies or worldwide pharmacovigilance reporting. For antibiotics specifically used for tuberculosis, adverse effects range from asymptomatic increases in liver enzymes to acute hepatitis and fulminant hepatic failure. Yet, it is difficult to single out individual drugs, as treatment always entails associations. Patients at risk are mainly those with previous experience of hepatotoxic reaction to antibiotics, the aged or those with impaired hepatic function in the absence of close monitoring, making it important to carefully balance potential risks with expected benefits in primary care. Pharmacogenetic testing using the new genome-wide association studies approach holds promise for better understanding the mechanism(s) underlying hepatotoxicity
    corecore