573 research outputs found
Perpendicular Ion Heating by Low-Frequency Alfven-Wave Turbulence in the Solar Wind
We consider ion heating by turbulent Alfven waves (AWs) and kinetic Alfven
waves (KAWs) with perpendicular wavelengths comparable to the ion gyroradius
and frequencies smaller than the ion cyclotron frequency. When the turbulence
amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion
then interacts stochastically with the time-varying electrostatic potential,
and the ion's energy undergoes a random walk. Using phenomenological arguments,
we derive an analytic expression for the rates at which different ion species
are heated, which we test by simulating test particles interacting with a
spectrum of randomly phased AWs and KAWs. We find that the stochastic heating
rate depends sensitively on the quantity epsilon = dv/vperp, where vperp is the
component of the ion velocity perpendicular to the background magnetic field
B0, and dv (dB) is the rms amplitude of the velocity (magnetic-field)
fluctuations at the gyroradius scale. In the case of thermal protons, when
epsilon << eps1, where eps1 is a constant, a proton's magnetic moment is nearly
conserved and stochastic heating is extremely weak. However, when epsilon >
eps1, the proton heating rate exceeds the cascade power that would be present
in strong balanced KAW turbulence with the same value of dv, and
magnetic-moment conservation is violated. For the random-phase waves in our
test-particle simulations, eps1 is approximately 0.2. For protons in low-beta
plasmas, epsilon is approximately dB/B0 divided by the square root of beta, and
epsilon can exceed eps1 even when dB/B0 << eps1. At comparable temperatures,
alpha particles and minor ions have larger values of epsilon than protons and
are heated more efficiently as a result. We discuss the implications of our
results for ion heating in coronal holes and the solar wind.Comment: 14 pages, 5 figures, submitted to Ap
Narrow-band high-lying excitons with negative-mass electrons in monolayer WSe<sub>2</sub>.
Monolayer transition-metal dichalcogenides (TMDCs) show a wealth of exciton physics. Here, we report the existence of a new excitonic species, the high-lying exciton (HX), in single-layer WSe2 with an energy of ~3.4 eV, almost twice the band-edge A-exciton energy, with a linewidth as narrow as 5.8 meV. The HX is populated through momentum-selective optical excitation in the K-valleys and is identified in upconverted photoluminescence (UPL) in the UV spectral region. Strong electron-phonon coupling results in a cascaded phonon progression with equidistant peaks in the luminescence spectrum, resolvable to ninth order. Ab initio GW-BSE calculations with full electron-hole correlations explain HX formation and unmask the admixture of upper conduction-band states to this complex many-body excitation. These calculations suggest that the HX is comprised of electrons of negative mass. The coincidence of such high-lying excitonic species at around twice the energy of band-edge excitons rationalizes the excitonic quantum-interference phenomenon recently discovered in optical second-harmonic generation (SHG) and explains the efficient Auger-like annihilation of band-edge excitons
Classification and biomarker identification using gene network modules and support vector machines
<p>Abstract</p> <p>Background</p> <p>Classification using microarray datasets is usually based on a small number of samples for which tens of thousands of gene expression measurements have been obtained. The selection of the genes most significant to the classification problem is a challenging issue in high dimension data analysis and interpretation. A previous study with SVM-RCE (Recursive Cluster Elimination), suggested that classification based on groups of correlated genes sometimes exhibits better performance than classification using single genes. Large databases of gene interaction networks provide an important resource for the analysis of genetic phenomena and for classification studies using interacting genes.</p> <p>We now demonstrate that an algorithm which integrates network information with recursive feature elimination based on SVM exhibits good performance and improves the biological interpretability of the results. We refer to the method as SVM with Recursive Network Elimination (SVM-RNE)</p> <p>Results</p> <p>Initially, one thousand genes selected by t-test from a training set are filtered so that only genes that map to a gene network database remain. The Gene Expression Network Analysis Tool (GXNA) is applied to the remaining genes to form <it>n </it>clusters of genes that are highly connected in the network. Linear SVM is used to classify the samples using these clusters, and a weight is assigned to each cluster based on its importance to the classification. The least informative clusters are removed while retaining the remainder for the next classification step. This process is repeated until an optimal classification is obtained.</p> <p>Conclusion</p> <p>More than 90% accuracy can be obtained in classification of selected microarray datasets by integrating the interaction network information with the gene expression information from the microarrays.</p> <p>The Matlab version of SVM-RNE can be downloaded from <url>http://web.macam.ac.il/~myousef</url></p
Air quality services on climate time-scales for decision making: An empirical study of China
The provision of climate services for assessing and governing environmental problems such as poor air quality requires interactions between scientists and decision-makers. Air quality information services in China mainly focus on the coming days to weeks. However, users may benefit from air quality information on climate time-scales—from months to decades; hereafter air quality climate services. We focused on key decision-makers and stakeholders that are users of air quality climate services and conducted five workshops with these identified users to ascertain their priorities for air quality climate services, and the reasoning behind these priorities. We also conducted a choice-based conjoint experiment via an online survey distributed amongst regional and local Climate Centres and Environmental Monitoring Centres to assess quantitatively the decision-makers’ needs. The results from the workshops and the survey showed that the needs for air quality climate services by users in China mainly relate to seasonal forecasting of winter haze events (PM2.5 levels and/or the meteorological conditions conducive to the dispersion of the air pollution); there is also some interest in long-term projections of haze under climate change and a growing interest in ozone pollution in summer. Spatial relevance is perceived to be important to regional and city-level stakeholders who prefer information on the city-level, whilst national-wide information is important for national government agencies. A high level of reliability of forecasts was needed for uptake. The findings on the needs for air quality climate services by potential users can support researchers and policy-makers in developing the scientific capacity and providing tailored and effective air quality climate services in China
GenCLiP: a software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords
<p>Abstract</p> <p>Background</p> <p>Biomedical researchers often want to explore pathogenesis and pathways regulated by abnormally expressed genes, such as those identified by microarray analyses. Literature mining is an important way to assist in this task. Many literature mining tools are now available. However, few of them allows the user to make manual adjustments to zero in on what he/she wants to know in particular.</p> <p>Results</p> <p>We present our software program, GenCLiP (Gene Cluster with Literature Profiles), which is based on the methods presented by Chaussabel and Sher (<it>Genome Biol </it>2002, 3(10):RESEARCH0055) that search gene lists to identify functional clusters of genes based on up-to-date literature profiling. Four features were added to this previously described method: the ability to 1) manually curate keywords extracted from the literature, 2) search genes and gene co-occurrence networks related to custom keywords, 3) compare analyzed gene results with negative and positive controls generated by GenCLiP, and 4) calculate probabilities that the resulting genes and gene networks are randomly related. In this paper, we show with a set of differentially expressed genes between keloids and normal control, how implementation of functions in GenCLiP successfully identified keywords related to the pathogenesis of keloids and unknown gene pathways involved in the pathogenesis of keloids.</p> <p>Conclusion</p> <p>With regard to the identification of disease-susceptibility genes, GenCLiP allows one to quickly acquire a primary pathogenesis profile and identify pathways involving abnormally expressed genes not previously associated with the disease.</p
Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi
Periplasmic flagella are essential for the distinctive morphology, motility, and infectious life cycle of the Lyme disease spirochete Borrelia burgdorferi. In this study, we genetically trapped intermediates in flagellar assembly and determined the 3D structures of the intermediates to 4-nm resolution by cryoelectron tomography. We provide structural evidence that secretion of rod substrates triggers remodeling of the central channel in the flagellar secretion apparatus from a closed to an open conformation. This open channel then serves as both a gateway and a template for flagellar rod assembly. The individual proteins assemble sequentially to form a modular rod. The hook cap initiates hook assembly on completion of the rod, and the filament cap facilitates filament assembly after formation of the mature hook. Cryoelectron tomography and mutational analysis thus combine synergistically to provide a unique structural blueprint of the assembly process of this intricate molecular machine in intact cells
Thyroid Hormone Promotes Remodeling of Coronary Resistance Vessels
Low thyroid hormone (TH) function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3) in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX), were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC)
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
- …