158 research outputs found
Ce-L3-XAS study of the temperature dependence of the 4f occupancy in the Kondo system Ce2Rh3Al9
We have used temperature dependent x-ray absorption at the Ce-L3 edge to
investigate the recently discovered Kondo compound Ce2Rh3Al9. The systematic
changes of the spectral lineshape with decreasing temperature are analyzed and
found to be related to a change in the occupation number, n_f, as the
system undergoes a transition into a Kondo state. The temperature dependence of
indicates a characteristic temperature of 150K, which is clearly related
with the high temperature anomaly observed in the magnetic susceptibility of
the same system. The further anomaly observed in the resistivity of this system
at low temperature (ca. 20K) has no effect on n_f and is thus not of Kondo
origin.Comment: 7 pages, three figures, submitted to PR
Doping Dependence of the Chemical Potential in Cuprate High- Superconductors I: LaSrCuO
The names of the authors, which were inadvertedly lacking in the tex-file
submitted two days ago, have been added.Comment: 10 pages, figures on request. Revtex, version 2, Materials Science
Center Internal Report Number VSGD.94.6.
Superconducting gap in the presence of bilayer splitting in underdoped Bi(Pb)2212
The clearly resolved bilayer splitting in ARPES spectra of the underdoped
Pb-Bi2212 compound rises the question of how the bonding and antibonding sheets
of the Fermi surface are gapped in the superconducting state. Here we compare
the superconducting gaps for both split components and show that within the
experimental uncertainties they are identical. By tuning the relative intensity
of the bonding and antibonding bands using different excitation conditions we
determine the precise {\bf k}-dependence of the leading edge gap. Significant
deviations from the simple cos()-cos() gap function for the
studied doping level are detected.Comment: 5 pages, 4 figures (revtex4
Hole Doping Evolution of the Quasiparticle Band in Models of Strongly Correlated Electrons for the High-T_c Cuprates
Quantum Monte Carlo (QMC) and Maximum Entropy (ME) techniques are used to
study the spectral function of the one band Hubbard model
in strong coupling including a next-nearest-neighbor electronic hopping with
amplitude . These values of parameters are chosen to improve the
comparison of the Hubbard model with angle-resolved photoemission (ARPES) data
for . A narrow quasiparticle (q.p.) band is observed in the
QMC analysis at the temperature of the simulation , both at and away
from half-filling. Such a narrow band produces a large accumulation of weight
in the density of states at the top of the valence band. As the electronic
density decreases further away from half-filling, the chemical
potential travels through this energy window with a large number of states, and
by it has crossed it entirely. The region near momentum
and in the spectral function is more sensitive to doping
than momenta along the diagonal from to . The evolution with
hole density of the quasiparticle dispersion contains some of the features
observed in recent ARPES data in the underdoped regime. For sufficiently large
hole densities the ``flat'' bands at cross the Fermi energy, a
prediction that could be tested with ARPES techniques applied to overdoped
cuprates. The population of the q.p. band introduces a {\it hidden} density in
the system which produces interesting consequences when the quasiparticles are
assumed to interact through antiferromagnetic fluctuations and studied with the
BCS gap equation formalism. In particular, a region of extended s-wave is found
to compete with d-wave in the overdoped regime, i.e. when the chemical
potential has almost entirely crossed the q.p.Comment: 14 pages, Revtex, with 13 embedded ps figures, submitted to Phys.
Rev. B., minor modifications in the text and in figures 1b, 2b, 3b, 4b, and
6
Variation in Soil Respiration across Soil and Vegetation Types in an Alpine Valley.
BACKGROUND AND AIMS: Soils of mountain regions and their associated plant communities are highly diverse over short spatial scales due to the heterogeneity of geological substrates and highly dynamic geomorphic processes. The consequences of this heterogeneity for biogeochemical transfers, however, remain poorly documented. The objective of this study was to quantify the variability of soil-surface carbon dioxide efflux, known as soil respiration (Rs), across soil and vegetation types in an Alpine valley. To this aim, we measured Rs rates during the peak and late growing season (July-October) in 48 plots located in pastoral areas of a small valley of the Swiss Alps.
FINDINGS: Four herbaceous vegetation types were identified, three corresponding to different stages of primary succession (Petasition paradoxi in pioneer conditions, Seslerion in more advanced stages and Poion alpinae replacing the climactic forests), as well as one (Rumicion alpinae) corresponding to eutrophic grasslands in intensively grazed areas. Soils were developed on calcareous alluvial and colluvial fan deposits and were classified into six types including three Fluvisols grades and three Cambisols grades. Plant and soil types had a high level of co-occurrence. The strongest predictor of Rs was soil temperature, yet we detected additional explanatory power of sampling month, showing that temporal variation was not entirely reducible to variations in temperature. Vegetation and soil types were also major determinants of Rs. During the warmest month (August), Rs rates varied by over a factor three between soil and vegetation types, ranging from 2.5 μmol m-2 s-1 in pioneer environments (Petasition on Very Young Fluvisols) to 8.5 μmol m-2 s-1 in differentiated soils supporting nitrophilous species (Rumicion on Calcaric Cambisols).
CONCLUSIONS: Overall, this study provides quantitative estimates of spatial and temporal variability in Rs in the mountain environment, and demonstrates that estimations of soil carbon efflux at the watershed scale in complex geomorphic terrain have to account for soil and vegetation heterogeneity
Current challenges and future perspectives for the full circular economy of water in European countries
This paper reviews the current problems and prospects to overcome circular water economy management challenges in European countries. The geopolitical paradigm of water, the water economy, water innovation, water management and regulation in Europe, environmental and safety concerns at water reuse, and technological solutions for water recovery are all covered in this review, which has been prepared in the frame of the COST ACTION (CA, 20133) FULLRECO4US, Working Group (WG) 4. With a Circular Economy approach to water recycling and recovery based on this COST Action, this review paper aims to develop novel, futuristic solutions to overcome the difficulties that the European Union (EU) is currently facing. The detailed review of the current environmental barriers and upcoming difficulties for water reuse in Europe with a Circular Economy vision is another distinctive aspect of this study. It is observed that the biggest challenge in using and recycling water from wastewater treatment plants is dealing with technical, social, political, and economic issues. For instance, geographical differences significantly affect technological problems, and it is effective in terms of social acceptance of the reuse of treated water. Local governmental organizations should support and encourage initiatives to expand water reuse, particularly for agricultural and industrial uses across all of Europe. It should not also be disregarded that the latest hydro politics approach to water management will actively contribute to addressing the issues associated with water scarcity.info:eu-repo/semantics/publishedVersio
The "Strange Metal" is a Projected Fermi Liquid with Edge Singularities
The puzzling "strange metal" phase of the high Tc cuprate phase diagram
reveals itself as closer to a Fermi liquid than previously supposed: it is a
consequence of Gutzwiller projection and does not necessarily require exotica
such as an RVB or mysterious quantum critical points. There is a Fermi
liquid-like excitation spectrum but the excitations are asymmetric between
electrons and holes, show anomalous forward scattering and have Z equal to 0.
We explain the power law dependence of conductivity on frequency and predict
anomalies in the tunneling and photoemission spectra.Comment: replaced tocorrect a math error in a later section, to clarify
exposition, and to add references to more experiment
20,000 years of societal vulnerability and adaptation to climate change in southwest Asia.
The Fertile Crescent, its hilly flanks and surrounding drylands has been a critical region for studying how climate has influenced societal change, and this review focuses on the region over the last 20,000 years. The complex social, economic, and environmental landscapes in the region today are not new phenomena and understanding their interactions requires a nuanced, multidisciplinary understanding of the past. This review builds on a history of collaboration between the social and natural palaeoscience disciplines. We provide a multidisciplinary, multiscalar perspective on the relevance of past climate, environmental, and archaeological research in assessing present day vulnerabilities and risks for the populations of southwest Asia. We discuss the complexity of palaeoclimatic data interpretation, particularly in relation to hydrology, and provide an overview of key time periods of palaeoclimatic interest. We discuss the critical role that vegetation plays in the human-climate-environment nexus and discuss the implications of the available palaeoclimate and archaeological data, and their interpretation, for palaeonarratives of the region, both climatically and socially. We also provide an overview of how modelling can improve our understanding of past climate impacts and associated change in risk to societies. We conclude by looking to future work, and identify themes of "scale" and "seasonality" as still requiring further focus. We suggest that by appreciating a given locale's place in the regional hydroscape, be it an archaeological site or palaeoenvironmental archive, more robust links to climate can be made where appropriate and interpretations drawn will demand the resolution of factors acting across multiple scales. This article is categorized under:Human Water > Water as Imagined and RepresentedScience of Water > Water and Environmental ChangeWater and Life > Nature of Freshwater Ecosystems
Matrilineal diversity and population history of Norwegians
Background
While well known for its Viking past, Norway's population history and the influences that have shaped its genetic diversity are less well understood. This is particularly true with respect to its demography, migration patterns, and dialectal regions, despite there being curated historical records for the past several centuries. In this study, we undertook an analysis of mitochondrial DNA (mtDNA) diversity within the country to elaborate this history from a matrilineal genetic perspective.
Methods
We aggregated 1174 partial modern Norwegian mtDNA sequences from the published literature and subjected them to detailed statistical and phylogenetic analysis by dialectal regions and localities. We further contextualized the matrilineal ancestry of modern Norwegians with data from Mesolithic, Iron Age, and historic period populations.
Results
Modern Norwegian mtDNAs fell into eight West Eurasian (N, HV, JT, I, U, K, X, W), five East Eurasian (A, F, G, N11, Z), and one African (L2) haplogroups. Pairwise analysis of molecular variance (AMOVA) estimates for all Norwegians indicated they were differentiated from each other at 1.68% (p < 0.001). Norwegians within the same dialectal region also showed genetic similarities to each other, although differences between subpopulations within dialectal regions were also observed. In addition, certain mtDNA lineages in modern Norwegians were also found among prehistoric and historic period populations, suggesting some level of genetic continuity over hundreds to many thousands of years.
Conclusions
This analysis of mtDNA diversity provides a detailed picture of the genetic variation within Norway in light of its topography, settlement history, and historical migrations over the past several centuries.publishedVersio
- …
