515 research outputs found
Multifaceted contributions : health workers and smallpox eradication in India
Smallpox eradication in South Asia was a result of the efforts of many grades of health-workers. Working from within the confines of international organisations and government structures, the role of the field officials, who were of various nationalities and also drawn from the cities and rural enclaves of the countries in these regions, was crucial to the development and deployment of policies. However, the role of these personnel is often downplayed in official histories and academic histories, which highlight instead the roles played by a handful of senior officials within the World Health Organization and the federal governments in the sub-continent. This article attempts to provide a more rounded assessment of the complex situation in the field. In this regard, an effort is made to underline the great usefulness of the operational flexibility displayed by field officers, wherein lessons learnt in the field were made an integral part of deploying local campaigns; careful engagement with the communities being targeted, as well as the employment of short term workers from amongst them, was an important feature of this work
The Interior Dynamics of Water Planets
The ever-expanding catalog of detected super-Earths calls for theoretical
studies of their properties in the case of a substantial water layer. This work
considers such water planets with a range of masses and water mass fractions (2
to 5 M_Earth, 0.02% to 50% H2 O). First, we model the thermal and dynamical
structure of the near-surface for icy and oceanic surfaces, finding separate
regimes where the planet is expected to maintain a subsurface liquid ocean and
where it is expected to exhibit ice tectonics. Newly discovered exoplanets may
be placed into one of these regimes given estimates of surface temperature,
heat flux, and gravity. Second, we construct a parameterized convection model
for the underlying ice mantle of higher ice phases, finding that materials
released from the silicate iron core should traverse the ice mantle on the
timescale of 0.1 to 100 megayears. We present the dependence of the overturn
times of the ice mantle and the planetary radius on total mass and water mass
fraction. Finally, we discuss the implications of these internal processes on
atmospheric observables.Comment: 9 page 4 figure
Could we identify hot Ocean-Planets with CoRoT, Kepler and Doppler velocimetry?
Planets less massive than about 10 MEarth are expected to have no massive
H-He atmosphere and a cometary composition (50% rocks, 50% water, by mass)
provided they formed beyond the snowline of protoplanetary disks. Due to inward
migration, such planets could be found at any distance between their formation
site and the star. If migration stops within the habitable zone, this will
produce a new kind of planets, called Ocean-Planets. Ocean-planets typically
consist in a silicate core, surrounded by a thick ice mantle, itself covered by
a 100 km deep ocean. The existence of ocean-planets raises important
astrobiological questions: Can life originate on such body, in the absence of
continent and ocean-silicate interfaces? What would be the nature of the
atmosphere and the geochemical cycles ?
In this work, we address the fate of Hot Ocean-Planets produced when
migration ends at a closer distance. In this case the liquid/gas interface can
disappear, and the hot H2O envelope is made of a supercritical fluid. Although
we do not expect these bodies to harbor life, their detection and
identification as water-rich planets would give us insight as to the abundance
of hot and, by extrapolation, cool Ocean-Planets.Comment: 47 pages, 6 Fugures, regular paper. Submitted to Icaru
Mass-radius relationships for exoplanets
For planets other than Earth, interpretation of the composition and structure
depends largely on comparing the mass and radius with the composition expected
given their distance from the parent star. The composition implies a
mass-radius relation which relies heavily on equations of state calculated from
electronic structure theory and measured experimentally on Earth. We lay out a
method for deriving and testing equations of state, and deduce mass-radius and
mass-pressure relations for key materials whose equation of state is reasonably
well established, and for differentiated Fe/rock. We find that variations in
the equation of state, such as may arise when extrapolating from low pressure
data, can have significant effects on predicted mass- radius relations, and on
planetary pressure profiles. The relations are compared with the observed
masses and radii of planets and exoplanets. Kepler-10b is apparently 'Earth-
like,' likely with a proportionately larger core than Earth's, nominally 2/3 of
the mass of the planet. CoRoT-7b is consistent with a rocky mantle over an
Fe-based core which is likely to be proportionately smaller than Earth's. GJ
1214b lies between the mass-radius curves for H2O and CH4, suggesting an 'icy'
composition with a relatively large core or a relatively large proportion of
H2O. CoRoT-2b is less dense than the hydrogen relation, which could be
explained by an anomalously high degree of heating or by higher than assumed
atmospheric opacity. HAT-P-2b is slightly denser than the mass-radius relation
for hydrogen, suggesting the presence of a significant amount of matter of
higher atomic number. CoRoT-3b lies close to the hydrogen relation. The
pressure at the center of Kepler-10b is 1.5+1.2-1.0 TPa. The central pressure
in CoRoT-7b is probably close to 0.8TPa, though may be up to 2TPa.Comment: Added more recent exoplanets. Tidied text and references. Added extra
"rock" compositions. Responded to referee comment
The discovery of WASP-151b, WASP-153b, WASP-156b: Insights on giant planet migration and the upper boundary of the Neptunian desert
To investigate the origin of the features discovered in the exoplanet population, the knowledge of exoplanets’ mass and radius with a good precision (≲10%) is essential. To achieve this purpose the discovery of transiting exoplanets around bright stars is of prime interest. In this paper, we report the discovery of three transiting exoplanets by the SuperWASP survey and the SOPHIE spectrograph with mass and radius determined with a precision better than 15%. WASP-151b and WASP-153b are two hot Saturns with masses, radii, densities and equilibrium temperatures of 0.31−0.03+0.04 MJ, 1.13−0.03+0.03 RJ, 0.22−0.02+0.03 ρJ and 1290−10+20 K, and 0.39−0.02+0.02 MJ, 1.55−0.08+0.10 RJ, 0.11−0.02+0.02 ρJ and 1700−40+40 K, respectively. Their host stars are early G type stars (with mag V ~ 13) and their orbital periods are 4.53 and 3.33 days, respectively. WASP-156b is a super-Neptune orbiting a K type star (mag V = 11.6). It has a mass of 0.128−0.009+0.010 MJ, a radius of 0.51−0.02+0.02 RJ, a density of 1.0−0.1+0.1 ρJ, an equilibrium temperature of 970−20+30 K and an orbital period of 3.83 days. The radius of WASP-151b appears to be only slightly inflated, while WASP-153b presents a significant radius anomaly compared to a recently published model. WASP-156b, being one of the few well characterized super-Neptunes, will help to constrain the still debated formation of Neptune size planets and the transition between gas and ice giants. The estimates of the age of these three stars confirms an already observed tendency for some stars to have gyrochronological ages significantly lower than their isochronal ages. We propose that high eccentricity migration could partially explain this behavior for stars hosting a short period planet. Finally, these three planets also lie close to (WASP-151b and WASP-153b) or below (WASP-156b) the upper boundary of the Neptunian desert. Their characteristics support that the ultra-violet irradiation plays an important role in this depletion of planets observed in the exoplanet population
Effects of experimental warming on carbon sink function of a temperate pristine mire : the PEATWARM project.
communication oraleInternational audienceWithin the PEATWARM project, we use Sphagnum peatlands as a model to analyse their vulnerability to climate change using an experimental system (ITEX) that simulates in situ an increase in average temperature. We aim to determine the effects of temperature increase on the vegetation, the balance of above- and belowground gas fluxes (CO2 and CH4), the microbial diversity and activity in Sphagnum mosses and in peat, and the dynamics of labile and recalcitrant organic matter of peat. The ultimate objective is the creation of a biogeochemical model of C coupled with N and S cycles that includes interactions between these key compartments
Five Kepler target stars that show multiple transiting exoplanet candidates
We present and discuss five candidate exoplanetary systems identified with
the Kepler spacecraft. These five systems show transits from multiple exoplanet
candidates. Should these objects prove to be planetary in nature, then these
five systems open new opportunities for the field of exoplanets and provide new
insights into the formation and dynamical evolution of planetary systems. We
discuss the methods used to identify multiple transiting objects from the
Kepler photometry as well as the false-positive rejection methods that have
been applied to these data. One system shows transits from three distinct
objects while the remaining four systems show transits from two objects. Three
systems have planet candidates that are near mean motion
commensurabilities---two near 2:1 and one just outside 5:2. We discuss the
implications that multitransiting systems have on the distribution of orbital
inclinations in planetary systems, and hence their dynamical histories; as well
as their likely masses and chemical compositions. A Monte Carlo study indicates
that, with additional data, most of these systems should exhibit detectable
transit timing variations (TTV) due to gravitational interactions---though none
are apparent in these data. We also discuss new challenges that arise in TTV
analyses due to the presence of more than two planets in a system.Comment: Accepted to Ap
Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius
We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in
the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite,
which we interpret as due to the presence of a transiting companion. We
describe the 3-colour CoRoT data and complementary ground-based observations
that support the planetary nature of the companion. Methods. We use CoRoT color
information, good angular resolution ground-based photometric observations in-
and out- of transit, adaptive optics imaging, near-infrared spectroscopy and
preliminary results from Radial Velocity measurements, to test the diluted
eclipsing binary scenarios. The parameters of the host star are derived from
optical spectra, which were then combined with the CoRoT light curve to derive
parameters of the companion. We examine carefully all conceivable cases of
false positives, and all tests performed support the planetary hypothesis.
Blends with separation larger than 0.40 arcsec or triple systems are almost
excluded with a 8 10-4 risk left. We conclude that, as far as we have been
exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which
we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/-
0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit
of 21 MEarth for the companion mass, supporting the finding.
CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language
corrections; version sent to the printer w few upgrade
Equation of state and phonon frequency calculations of diamond at high pressures
The pressure-volume relationship and the zone-center optical phonon frequency
of cubic diamond at pressures up to 600 GPa have been calculated based on
Density Functional Theory within the Local Density Approximation and the
Generalized Gradient Approximation. Three different approaches, viz. a
pseudopotential method applied in the basis of plane waves, an all-electron
method relying on Augmented Plane Waves plus Local Orbitals, and an
intermediate approach implemented in the basis of Projector Augmented Waves
have been used. All these methods and approximations yield consistent results
for the pressure derivative of the bulk modulus and the volume dependence of
the mode Grueneisen parameter of diamond. The results are at variance with
recent precise measurements up to 140 GPa. Possible implications for the
experimental pressure determination based on the ruby luminescence method are
discussed.Comment: 10 pages, 6 figure
- …
