631 research outputs found

    Liquid-liquid coexistence in the phase diagram of a fluid confined in fractal porous materials

    Full text link
    Multicanonical ensemble sampling simulations have been performed to calculate the phase diagram of a Lennard-Jones fluid embedded in a fractal random matrix generated through diffusion limited cluster aggregation. The study of the system at increasing size and constant porosity shows that the results are independent from the matrix realization but not from the size effects. A gas-liquid transition shifted with respect to bulk is found. On growing the size of the system on the high density side of the gas-liquid coexistence curve it appears a second coexistence region between two liquid phases. These two phases are characterized by a different behaviour of the local density inside the interconnected porous structure at the same temperature and chemical potential.Comment: 5 pages, 4 figures. To be published in Europhys. Letter

    Proba-V Multi-Temporal Super-Resolution Guided by Sentinel-2

    Get PDF
    Multi-image super-resolution (MISR) is a technique used to increase the spatial resolution of images acquired by remote sensing platforms by combining the images acquired through multiple revisits. Supervised training of MISR models requires collecting high-resolution images to be used as ground truth. Except for a few special cases, this involves acquiring images from a different satellite, resulting in a shift in the optical and radiometric characteristics with respect to the sensor to be super-resolved. In this paper, we explore the use of Sentinel-2 images to train a MISR model for Proba-V images and highlight the challenges of this pursuit

    Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromosome 21q21.3 and identified bi-allelic variants in JAM2. JAM2 encodes for the junctional-adhesion-molecule-2, a key tight-junction protein in blood-brain-barrier permeability. We show that JAM2 variants lead to reduction of JAM2 mRNA expression and absence of JAM2 protein in patient's fibroblasts, consistent with a loss-of-function mechanism. We show that the human phenotype is replicated in the jam2 complete knockout mouse (jam2 KO). Furthermore, neuropathology of jam2 KO mouse showed prominent vacuolation in the cerebral cortex, thalamus, and cerebellum and particularly widespread vacuolation in the midbrain with reactive astrogliosis and neuronal density reduction. The regions of the human brain affected on neuroimaging are similar to the affected brain areas in the myorg PFBC null mouse. Along with JAM3 and OCLN, JAM2 is the third tight-junction gene in which bi-allelic variants are associated with brain calcification, suggesting that defective cell-to-cell adhesion and dysfunction of the movement of solutes through the paracellular spaces in the neurovascular unit is a key mechanism in CNS calcification

    The conditioning of medical gases with hot water humidifiers

    Get PDF
    During invasive mechanical ventilation due to the dryness of medical gases is necessary to provide an adequate level of conditioning. The hot water humidifiers (HWH) heat the water, thus allowing the water vapor to heat and humidify the medical gases. In the common HWH there is a contact between the medical gases and the sterile water, thus increasing the risk of patient’s colonization and infection. Recently to avoid the condensation in the inspiratory limb of the ventilator circuit, new heated ventilator circuits have been developed. In this in vitro study we evaluated the efficiency (absolute/relative humidity) of three HWH: (1) a common HWH without a heated ventilator circuit (MR 730, Fisher&Paykel, New Zeland), (2) the same HWH with a heated ventilator circuit (Mallinckrodt Dar, Italy) and (3) a new HWH (DAR HC 2000, Mallinkckrodt Dar, Italy) with a heated ventilator circuit in which the water vapor reaches the medical gases through a gorotex membrane, avoiding any direct contact between the water and gases. At a temperature of 35°C and 37°C the HWH and heated tube were evaluated. The absolute humidity (AH) and relative humidity (RH) were measured by a psychometric method. The minute ventilation, tidal volume respiratory rate and oxygen fraction were: 5.8 ± 0.1 l/min, 740 ± 258 ml, 7.5 ± 2.6 bpm and 100%, respectively. Ventilator P2 Use of a bougie during percutaneous tracheostom

    Modelling Magnetar Behaviour with 3D Magnetothermal Simulations

    Get PDF
    The observational properties of isolated NSs are shaped by their magnetic field and surface temperature. They evolve in a strongly coupled fashion, and modelling them is key in understanding the emission properties of NSs. Much effort was put in tackling this problem in the past but only recently a suitable 3D numerical framework was developed. We present a set of 3D simulations addressing both the long-Term evolution (≈ 104-106 yrs) and short-lived outbursts (â 1 yr). Not only a 3D approach allows one to test complex field geometries, but it is absolutely key to model magnetar outbursts, which observations associate to the appearance of small, inherently asymmetric hot regions. Even though the mechanism that triggers these phenomena is not completely understood, following the evolution of a localised heat injection in the crust serves as a model to study the unfolding of the event

    Three-dimensional Modeling of the Magnetothermal Evolution of Neutron Stars: Method and Test Cases

    Get PDF
    Neutron stars harbor extremely strong magnetic fields within their solid outer crust. The topology of this field strongly influences the surface temperature distribution and, hence, the star's observational properties. In this work, we present the first realistic simulations of the coupled crustal magnetothermal evolution of isolated neutron stars in three dimensions accounting for neutrino emission, obtained with the pseudo-spectral code parody. We investigate both the secular evolution, especially in connection with the onset of instabilities during the Hall phase, and the short-term evolution following episodes of localized energy injection. Simulations show that a resistive tearing instability develops in about a Hall time if the initial toroidal field exceeds 1015\approx {10}^{15} G. This leads to crustal failures because of the huge magnetic stresses coupled with the local temperature enhancement produced by dissipation. Localized heat deposition in the crust results in the appearance of hot spots on the star surface, which can exhibit a variety of patterns. Because the transport properties are strongly influenced by the magnetic field, the hot regions tend to drift away and get deformed following the magnetic field lines while cooling. The shapes obtained with our simulations are reminiscent of those recently derived from NICER X-ray observations of the millisecond pulsar PSR J0030+0451

    Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells

    Get PDF
    Epidermal growth factor receptor (EGFR) is an important regulator of epithelial cell growth and survival in normal and cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is associated in epithelial cells with the heavily glycosylated transmembrane mucin protein MUC1, a natural ligand of galectin-3 that is overexpressed in cancer. This study reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR activation in human breast and colon cancer cells. Both the MUC1 extracellular and intracellular domains are involved in EGFR activation but the predominant influence comes from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain induces MUC1 cell surface polarization and increases MUC1–EGFR association. This leads to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. Thus, interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly overexpressed in most types of epithelial cancers, their interaction and impact on EGFR activation likely makes important contribution to EGFR-associated tumorigenesis and cancer progression and may also influence the effectiveness of EGFR-targeted cancer therapy

    Optical–SZE scaling relations for DES optically selected clusters within the SPT-SZ survey

    Get PDF
    We study the Sunyaev–Zel'dovich effect (SZE) signature in South Pole Telescope (SPT) data for an ensemble of 719 optically identified galaxy clusters selected from 124.6 deg² of the Dark Energy Survey (DES) science verification data, detecting a clear stacked SZE signal down to richness λ ∼ 20. The SZE signature is measured using matched-filtered maps of the 2500 deg2 SPT-SZ survey at the positions of the DES clusters, and the degeneracy between SZE observable and matched-filter size is broken by adopting as priors SZE and optical mass–observable relations that are either calibrated using SPT-selected clusters or through the Arnaud et al. (A10) X-ray analysis. We measure the SPT signal-to-noise ζ–λ relation and two integrated Compton-yY500–λ relations for the DES-selected clusters and compare these to model expectations that account for the SZE–optical centre offset distribution. For clusters with λ > 80, the two SPT-calibrated scaling relations are consistent with the measurements, while for the A10-calibrated relation the measured SZE signal is smaller by a factor of 0.61 ± 0.12 compared to the prediction. For clusters at 20 < λ < 80, the measured SZE signal is smaller by a factor of ∼0.20–0.80 (between 2.3σ and 10σ significance) compared to the prediction, with the SPT-calibrated scaling relations and larger λ clusters showing generally better agreement. We quantify the required corrections to achieve consistency, showing that there is a richness-dependent bias that can be explained by some combination of (1) contamination of the observables and (2) biases in the estimated halo masses. We also discuss particular physical effects associated with these biases, such as contamination of λ from line-of-sight projections or of the SZE observables from point sources, larger offsets in the SZE-optical centring or larger intrinsic scatter in the λ–mass relation at lower richnesses

    Regulation during the second year: Executive function and emotion regulation links to joint attention, temperament, and social vulnerability in a Latin American sample

    Get PDF
    © 2019 Gago Galvagno, De Grandis, Clerici, Mustaca, Miller and Elgier. Although a growing body of work has established developing regulatory abilities during the second year of life, more work is needed to better understand factors that influence this emerging control. The purpose of the present study was to examine regulation capacities in executive functions (i.e., EF or cognitive control) and emotion regulation (i.e., ER or control focused on modulating negative and sustaining positive emotions) in a Latin American sample, with a focus on how joint attention, social vulnerability, and temperament contribute to performance. Sixty Latin American dyads of mothers and children aged 18 to 24 months completed several EF tasks, a Still-Face Paradigm (SFP) to examine ER (Weinberg et al., 2008), and the Early Social Communication Scale to measure joint attention (Mundy et al., 2003). Parents completed the Early Childhood Behavior Questionnaire Very Short Form to measure temperament (ECBQ-VS, Putnam et al., 2010) and the Social Economic Level Scale (SES) from INDEC (2000). Results revealed the typical responses expected for toddlers of this age in these EF tasks and in the SFP. Also, we found associations between EF and ER and between non-verbal communication related to monitoring infants\u27 attention to objects (i.e., responding to joint attention) and initiation of pointing (e.g., pointing and showing of an object while the child alternates his gaze to an adult) with EF. Regarding social factors, family differences and type of housing contribute to regulation. For temperament, effortful control was associated with both regulatory capacities. Finally, only age predicted EF. These results suggest that many patterns regarding the development of these abilities are duplicated in the first months of life in a Latin American sample while further highlighting the importance of considering how the environment and the individual characteristics of infants may associate to these regulatory abilities, which is particularly relevant to developing public policies to promote their optimal development
    corecore