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Abstract 

EGFR is an important regulator of epithelial cell growth and survival in normal and 

cancerous tissues and is a principal therapeutic target for cancer treatment. EGFR is 

associated in epithelial cells with the heavily glycosylated transmembrane mucin protein 

MUC1, a natural ligand of galectin-3 that is overexpressed in cancer condition. This study 

reveals that the expression of cell surface MUC1 is a critical enhancer of EGF-induced EGFR 

activation in human breast and colon cancer cells. Both the MUC1 extracellular and 

intracellular domains are involved in EGFR activation but the predominant influence comes 

from its extracellular domain. Binding of galectin-3 to the MUC1 extracellular domain 

induces MUC1 cell surface polarization and increases MUC1-EGFR association. This leads 

to a rapid increase of EGFR homo-/hetero-dimerization and subsequently increased, and also 

prolonged, EGFR activation and signalling. This effect requires both the galectin-3 C-

terminal carbohydrate recognition domain and its N-terminal ligand multi-merization domain. 

Thus, interaction of galectin-3 with MUC1on cell surface promotes EGFR dimerization and 

activation in epithelial cancer cells. As MUC1 and galectin-3 are both commonly 

overexpressed in most types of epithelial cancers, their interaction and impact on EGFR 

activation likely makes important contribution to EGFR-associated tumorigenesis and cancer 

progression and may also influence the effectiveness of EGFR-targeted cancer therapy.   
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Introduction 

MUC1 is a large (>400kDa), heavily glycosylated transmembrane mucin protein and is 

expressed in a polarized manner on the apical side of all normal epithelial cells. MUC1 

consists of a large extracellular domain, a transmembrane region and a short cytoplasmic 

domain/tail. The MUC1 extracellular domain contains various numbers of tandem repeats 

(VNTR) that are heavily glycosylated (up to 50% of the MUC1 molecular weight) with 

complex O-linked mucin type glycans1. The cytoplasmic tail of MUC1 contains 72 amino 

acids and harbours several phosphorylation sites and is able to interact with various growth 

factor receptors and intracellular signalling proteins 2, 3, 4. In epithelial cancer cells, MUC1 is 

not only overexpressed up to 10-fold but also loses its apical membrane polarization to 

become expressed over the entire cell surface5, 6. In epithelial cancer cells, MUC1 also carries 

much reduced complex O-glycans with increased expression of  shorter sugar chains such as 

the oncofetal oligosaccharides GalNAcα- (Tn antigen), sialylated-GalNAcα- (sialyl-Tn 

antigen) and Galβ1,3GalNAcα- (Thomsen-Friedenreich, T or TF antigen)7. MUC1 

overexpression, its loss of apical polarization and increased expression of the oncofetal 

carbohydrate antigens have all, individually or in combination, been reported to be closely 

associated with high metastatic potential and poor prognosis in many types of cancers 8. 

Immunological targeting of cancer-associated MUC1 has been under intensive investigation 

as a strategy for cancer treatment 9.  

 

MUC1 is known to interact with various cellular proteins, through both its intracellular10 and 

extracellular domains11, and influences  diverse signalling pathways that are important in cell 

proliferation, adhesion and immunomodulation2, 4, 12, 13. One of the proteins that have recently 

been reported to interact with MUC1 in epithelial cancer cells is the epidermal growth 

factor receptor (EGFR) 14 15 16.  



4 
 

 

EGFR is a member of the ErbB family of receptor tyrosine kinases that includes EGFR/ 

ErbB1 (Her1), ErbB2 (Her2/c-Neu), ErbB3 (Her3) and ErbB4 (Her4)17. EGFR is involved in 

the regulation of multiple cellular process including proliferation and survival and its activity 

is directly linked with tumorigenesis and metastasis17. EGFR exists normally in an inactive 

conformation. Binding to its extracellular domain by ligands such as EGF induces EGFR 

conformation change and enables its interaction with another member of ErbB family 

proteins to form homo- or hetero-dimers17. This leads to activation of EGFR tyrosine kinase 

domain and auto-phosphorylation of specific tyrosine residues at its cytoplasmic domain. 

These phosphorylated residues then serve as binding sites for proteins containing Src 

homology and phosphotyrosine binding domains, leading to activation of downstream 

signalling pathways such as the Ras/extracellular signal regulated kinase (ERK) pathway, 

the phosphatidylinositol 3-kinase (PI3) pathway, the Janus kinase/Signal transducer and 

activator of transcription (JAK/ STAT) pathway17, crucial in cell proliferation, migration and 

survival.  

 

In physiological conditions, EGFR activation is tightly regulated by its expression and by the 

availability of binding ligands to ensure that cell proliferation matches tissue requirement for 

homeostasis. In neoplasia, however, EGFR activation is often increased due to either 

increased EGFR expression, EGFR mutation or increased availability of the EGFR ligand 

produced by the same cells that express the ErbB receptors or by surrounding cells18,19. 

Aberrant expression of EGFR by tumours typically also confers a more aggressive phenotype 

and has been shown to an indicator of poor prognosis in several types of epithelial cancer 20, 

21, 22. Not surprisingly, EGFR is currently a principal target for therapeutic intervention in 

cancer. 
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Galectin-3 is a β-galactoside-binding protein expressed by many types of human cells and 

particularly by epithelial and immune cells. Galectin-3 is distributed in the cytoplasm, nuclei, 

cell surface, extracellular space and in circulation. Overexpression of galectin-3 commonly 

occurs in most types of cancers such as colorectal, breast, lung, prostate, pancreatic, head and 

neck cancer and melanoma23. The level of circulating galectin-3 is also markedly elevated (up 

to 30-fold) in cancer patients and particularly in those with metastasis24. Overexpression of 

galectin-3 by cancer cells is increasingly shown to influence cancer cell-cell and cancer-

microenvironment communication and contributes to cancer development, progression and 

metastasis as a result of galectin-3 interaction with various galactose-terminated glycans 

carried by glycoproteins and glycolipids on the cell surface as well as in the extracellular 

matrix25.  

 

Recently studies by us and others have revealed that galectin-3 is a natural ligand of MUC1 

in epithelial cancer cells11. The interaction between galectin-3 and MUC1, via binding of 

galectin-3 to the oncofetal TF carbohydrate antigen on MUC111, induces MUC1 cell surface 

polarization and the exposure of underlying smaller cell surface molecules. This leads to 

increased cancer cell homotypic aggregation 26 and cancer cell heterotypic cell adhesion to 

vascular endothelium 27, two important steps in the cancer metastasis cascade. As MUC1 is 

also associated with EGFR in epithelial cancer cells, the effect of galectin-3-MUC1 

interaction on MUC1 cell surface localization led us to examine the impact of their 

interaction on EGFR activity in epithelial cells.  

 

We show here that both the MUC1 extracellular and intracellular domains contribute to EGF-

induced EGFR activation in human colon and breast cancer cells with the predominate 
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contribution from the MUC1 external domain. Binding of galectin-3 to the MUC1 

extracellular domain induces MUC1 cell surface polarization and increases MUC1-EGFR 

interaction, leading to increased EGFR homo-/hetero-dimerization and activation.   



7 
 

Result 

MUC1 extra- and intra-cellular domains both contribute to EGFR activation 

Interaction between MUC1 and EGFR has been shown to influence EGFR activity in breast 

cancer,28 endometrial cancer,29 and non-small cell lung cancer30 cells. In this study we first 

tested the influence of MUC1 expression on EGFR activation in human breast epithelial and 

colon cancer cells and assessed the influence of MUC1 intra- and extra-cellular domains on 

this effect.  

 

We transfected human colon cancer HCT116 cells with cDNA coding for full length MUC1, 

MUC1 with intra- or extra-cellular domain (VNTR region) depletion (Fig 1A). 

Immunoblotting with anti-MUC1 antibodies against the MUC1 extracellular (B27.29) and 

intracellular (CT2) domains showed neo expression of MUC1 in the parent (control 

transfected) cells (HCT116MUC1neo), the expression of MUC1 extra- and intra-cellular 

domains in the full length MUC1 transfectants (HCT116MUC1Full), the expression of MUC1 

extracellular, but not intracellular, domain of MUC1 intracellular domain-depleted mutants 

(HCT116MUC1ΔCT) and the expression of MUC1 intracellular, but not extracellular, domain 

mutants (HCT116MUC1ΔTR) (Fig 1B).  Immunoblotting also showed MUC1 expression in 

human breast epithelial cells transfected with full length MUC1 (HCA1.7+), neo MUC1 

expression in the negative MUC1 revertants (HCA1.7-) and expression of the MUC1 

extracellular, but not intracellular, domain of the MUC1 intracellular domain-depleted (HTD 

∆CT) mutant cells (Fig 1C).   

 

Armed with these transgenic mutant cells of two different cell types, we then assessed the 

effects of MUC1 expression and MUC1 intra- and extra-cellular domains on EGFR activity. 

In response to EGF binding,  EGFR phosphorylation rapidly occurred in the full length 
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MUC1-expressing cells (HCT116MUC1Full and HCA1.7+) of both cell types (Fig 2A and B, 

top panels) but very weak EGFR phosphorylation in the MUC1-negative cells (Fig 2A and B, 

second panels). In comparison to MUC1- negative cells, a 12-fold and 17 fold increase of 

EGFR phosphorylation were observed at 10 min and 60 min, respectively, of HCA1.7+ and 

HCT116MUC1Full  (Fig 2A-D). Depletion of the MUC1 extracellular domain markedly reduced 

EGFR activation in HCT116MUC1ΔTR (Fig 2A and C) but depletion of the MUC1 intracellular 

domain resulted in less but still substantial inhibition of EGFR phosphorylation in HTD 

(∆CT) and HCT116MUC1ΔCT. These results suggest that expression of MUC1 is critical to 

EGF-induced EGFR activation and that both the MUC1 intra- and extra-cellular domains 

contribute to the MUC1-associated increase of EGFR activity but with predominate influence 

from the MUC1 extracellular domain.  

 

Galectin-3 interaction with cell surface MUC1 promotes EGFR activation  

We next assessed the influence on EGFR activity of MUC1 cell surface interaction with 

galectin-3 at pathological galectin-3 concentrations observed in cancer patients24, 31. Without 

the presence of EGF, introduction of galectin-3 did not show any effect on EGFR activation 

in either MUC1-positive HCA1.7+ or MUC1-negative HCA1.7- cells of breast origin (Fig 

3A-F). When EGF was introduced, galectin-3 presence caused more (e.g. by 106% at 5 min) 

EGFR activation in the MUC1-positive HCA1.7+ cells (Fig 3A and D) but had no effect in 

the MUC1-negative HCA1.7- cells (Fig 3B and E). In comparison to the cells treated with 

EGF alone, the presence of galectin-3 was shown to cause more (e.g. by 281% at 5 min) 

EGFR activation in the MUC1-cytoplasmic domain-depleted HTD(∆CT) cells and a 

prolonged activation of EGFR was also observed in these cells (Fig 3C and F).  
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Similar results were observed with colon cancer HCT116 cells. Presence of galectin-3 alone 

did not show any effect on EGFR phosphorylation of either MUC1-positive HCT116MUC1Full 

or -negative HCT116MUC1neo cells (Fig 4A-D). When EGF and galectin-3 were both 

introduced, more (e.g. by 113% at 10 min) EGFR activation was observed in the MUC1-

positive HCT116MUC1Full than that treated with EGF alone. These results indicate that 

interaction of MUC1 with galectin-3 on the cell surface promotes EGFR activation.   

 

We also assessed the contribution of endogenous cell surface galectin-3 to the effect of 

galectin-3-MUC1 cell surface interaction on EGFR activation in these cells. As the effect of 

galectin-3-MUC1 effect on EGFR activation shown in this study occurs on the cell surface, it 

is the potential effect of endogenous galectin-3 on the cell surface rather than the whole 

cellular galectin-3 expression that is relevant. A previous study has shown that treatment of 

HCT116 cell with 30mM lactose could abrogate cell surface galectin-332. Using this strategy, 

we first removed the endogenous cell surface galectin-3 by pre-treatment of the cells with 

lactose before washing and introduction of EGF and galectin-3. Little difference in EGFR 

activation was observed between lactose pre-treated and untreated cells in both HCA1.7+ 

(Fig 4C and G) and HCT116MUC1full cells (Fig 4D and H) in cell response to EGF and 

galectin-3. This indicates that in this experimental setting the contribution of endogenous cell 

surface galectin-3 is minimal.  

 

MUC1-galectin-3 interaction-induced EGFR activation increases downstream ERK1/2 

signalling 

It is known that EGFR activation on the cell membrane triggers an array of intracellular 

signalling pathways17, 33. One of the commonest signalling pathways triggered by EGFR 

activation is ERK signalling17, 34  and galectin-3 in the MUC1- positive and -negative cells.  
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Introduction of EGF to the cells induced rapid ERK1/2 phosphorylation in MUC1-positive 

HCA1.7+ and HCT116MUC1Full cells (Fig 5A and C). The increase of ERK1/2 

phosphorylation peaked at 10 min at which point a 3.6- and 10.3-fold increase of ERK1/2 

phosphorylation was observed in HCA1.7+ (Fig 5A) and HCT116MUC1Full (Fig 5C) cells 

respectively. Introduction of EGF also induced ERK1/2 phosphorylation of the MUC1 

negative HCA1.7- and HCT116MUC1neo cells but to a much lower level in comparison to the 

MUC1-positive cells (Fig 5 B and D), in consistence with the effect of MUC1 expression on 

EGFR activity shown in Figure 2-4. At 10 min, a 1.9- and 1.8-fold increase of ERK1/2 

phosphorylation was observed in HCA1.7- and HCT116MUC1neo cells.  

 

When galectin-3 was also present, EGF induced a stronger (1.9- and 4.9-fold further increase 

at 10 min) and more prolonged ERK1/2 phosphorylation in the MUC1-positive HCA1.7+ 

(Fig 5A) and HCT116MUC1Full (Fig 5C) cells, while ERK1/2 phosphorylation in the MUC1-

negative HCA1.7- (Fig 5B) and HCT116MUC1neo cells (Fig 5D) remained the same as for the 

cells treated with EGF alone. In contrast to the enhanced ERK1/2 activation by the full length 

galectin-3/EGF in the MUC1-positive cells, introduction of C-terminal galectin-3 form 

(galectin-3C) with EGF showed no further effect on ERK-1/2 phosphorylation in comparison 

to the cells treated with EGF alone. Moreover, without the presence of EGF, introduction of 

galectin-3 alone did not show any detectable influence on ERK1/2 phosphorylation.  

 

These results suggest that, as predicted, EGFR activation on the cell surface induced by 

MUC1 and by MUC1-galectin-3 interaction effectively induces downstream signalling. The 

stronger and more prolonged ERK1/2 activation in the MUC1-positive cells seen with 

galectin-3 is in keeping with the stronger and more prolonged activation of EGFR (Fig 2-4). 
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In comparison to the marked effect on EGFR activation by full length galectin-3, the lack of 

effect by galectin-3C, in which its N-terminal ligand multimerization domain is depleted 

hence unable to crosslink MUC1 for cluster formation, suggests that MUC1 clustering is 

essential in galectin-3-MUC1 interaction-induced EGFR activation.  

 

Activation of EGFR and ERK by galectin-3-MUC1 interaction is inhibited by the 

EGFR inhibitor lapatinib 

To further determine whether the effect of galectin-3-MUC1 interaction on ERK activation 

was indeed the consequence of EGFR activation, we tested the effect of Lapatinib, an EGFR 

phosphorylation inhibitor35 on activation of EGFR and ERK in these cells.  As shown above, 

the presence of EGF induced EGFR phosphorylation and the introduction of galectin-3 

further increased EGF-induced EGFR phosphorylation of HCT116MUC1Full (Fig 6A) and 

HCA1.7 cells (Fig 6B). The presence of Lapatinib inhibited EGFR phosphorylation in 

response to EGF of HCT116MUC1Full and HCA1.7 cells and also abolished EGFR activation in 

these cells associated with galectin-3. A similar effect was observed for ERK1/2 

phosphorylation in those cells, Lapatinib prevented activation of ERK1/2 phosphorylation in 

HCT116MUC1Full (Fig 6C) and HCA1.7 cells (Fig 6D). As shown in the earlier part of this 

study, the presence of galectin-3C also did not show any effect on phosphorylation of either 

EGFR (Fig 6A and B) or ERK1/2 (Fig 6C and D).  These results suggest that the increased 

phosphorylation of ERK1/2 by MUC1 expression and by MUC1-galectin-3 interaction (Fig 

5) is the consequence of EGFR activation. It also further confirms that the effect of MUC1 

and galectin-3-MUC1 interaction on EGFR activation effectively enhances downstream 

EGFR signalling.  

 

Galectin-3-MUC1 interaction increases EGFR homo-/hetero-dimerization 
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In EGF-induced EGFR activation, an immediate event upon EGF binding is EGFR 

dimerization, which is then followed by EGFR auto-phosphorylation and internalization 36, 37, 

38. As the MUC1 extracellular domain appears to play a critical role in EGFR activation and 

as galectin-3-MUC1 interaction occurs on the cell surface (Fig 2-5), we speculated that the 

effect of galectin-3-MUC1 interaction on EGFR activation might be associated with an effect 

on EGFR dimerization.  To test this, we treated the cells without or with EGF or galectin-3 

and then with non-cleavable crosslinker BS3 before EGFR analysis by immunoblotting.   

 

It was found that, as expected, treatment of the cells with EGF induced EGFR dimerization in 

the MUC1-positive HCT116MUC1Full (Fig 7A) and HCA1.7+ (Fig 7C) cells. EGFR 

dimerization was seen predominately as homo-dimers in HCT116MUC1Full but hetero-dimers 

in HCA1.7+ cells in response to EGF.  The presence of galectin-3 further increased EGFR 

dimerization in both cell types. Interestingly, galectin-3-induced EGFR dimerization occurred 

both homo- and hetero-dimers in HCT116MUC1Full cells (Fig 7A) but predominately as homo-

dimers in HCA1.7+ cells (Fig 7C). Consistent with the lack of influence on activation of 

EGFR and ERK in the MUC1-negative cells (Fig 2-4), EGF alone, or with galectin-3, 

showed little effect on EGFR dimerization in the HCT116MUC1neo (Fig 7B) and HCA1.7- (Fig 

7D) cells. Moreover, although the presence of full length galectin-3 increased EGFR 

dimerization (Fig 7A and B) and EGFR phosphorylation (Fig 3-6), the presence of the 

truncated galectin-3C did not show any effect on EGFR dimerization and the levels of EGFR 

homo-/hetero-dimers remained the same as the EGF alone-treated HCT116MUC1Full (Fig 7A) 

and HCA1.7+ (Fig 7C) cells.  

 

These results suggest that EGFR activation induced by galectin-3-MUC1 interaction is 

associated with promotion of EGFR dimerization. The lack of effect of the truncated galectin-
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3C on EGFR dimerization in comparison to the full length galectin-3 in MUC1-postive cells 

further supports an essential role of galectin-3-induced MUC1 clustering in EGFR activation.    

 

Galectin-3 increases interaction of MUC1 with EGFR  

To gain further insight into the action of galectin-3-MUC1 interaction-mediated EGFR 

activation, we assessed interaction of MUC1 with EGFR in cells in response to EGF and 

galectin-3.  It was found treatment of the cells with EGF did not have any effect on MUC1-

EGFR interaction in comparison to control untreated cells (Fig 7E, first and second lanes). 

However, treatment of the cells with galectin-3, regardless of the presence or absence of 

EGF, resulted in increased co-immunoprecipitation of EGFR with MUC1 (Fig 7E, third and 

fourth lane) in comparison to the control untreated or the EGF-alone treated cells (first and 

second lane). This suggests that galectin-3-MUC1 interaction promotes physical interaction 

of MUC1 with EGFR and this increased MUC1-EGFR interaction likely represents a key 

component of galectin-3-associated EGFR activation.   

 

As galectin-3 has been previously reported to be able to interact directly with EGFR16, 39, we 

also assessed whether direct interaction of galectin-3 with EGFR is involved in this action. 

Minimal galectin-3 was found to be co-immunoprecipitated with EGFR in these cells (Fig 

7F). In comparison to EGF alone-treated cells (Fig 7F, second lane), introduction of galectin-

3 and EGF did not increase galectin-3 presence in EGFR immunoprecipitates (Fig 7F, third 

lane), thus not supporting a role of galectin-3-EGFR interaction in this action of EGFR 

activation.   

 

Galectin-3 increases EGFR internalization  
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Following EGFR dimerization and auto-phosphorylation in response to ligand binding, 

EGFR internalization is an essential next step in EGFR signalling. In both HCT116MUC1Full 

and HCA1.7 cells, EGFR appeared both on the cell surface and inside the cells (Fig 8A and 

B). Addition of EGF resulted in substantial loss of EGFR from the cell surface and its intra-

cellular accumulation in both HCT116MUC1Full (Fig 8A) and HCA1.7+ (Fig 8B) cells. MUC1 

localization was uniformly spread on the cell surface and was not affected by the absence or 

presence of EGF. Introduction of galectin-3, as reported previously11, induced change of 

MUC1 cell surface localization (as illustrated by disruption of the uniform localization). The 

presence of galectin-3 with EGF also increased EGFR internalization in comparison to the 

cells treated with EGF alone. It is noted that the internalized EGFR induced by galectin-

3/EGF interaction was seen to occur in a more clustered pattern inside the cells than that 

induced by EGF alone. Introduction of galectin-3 without addition of EGF did not show any 

effect on EGFR localization compared to the control cells.  This, together with the lack of 

effect of full length galectin-3 on EGFR activation in MUC1-negative cells and the lack of 

effect of truncated galectin-3C on EGFR activation in the MUC1-positive cells, indicates that 

galectin-3-mediated EGFR activation is associated with its effect on alteration of MUC1 cell 

surface localization.  
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Discussion 

This study shows that EGF-induced EGFR activation is substantially increased by expression 

of the transmembrane mucin protein MUC1 in human breast and colon epithelial cells. Both 

the MUC1 intracellular and extracellular domains contribute to the effect of MUC1 on EGFR 

activation but the predominant influence comes from the MUC1 extracellular domain. 

Interaction of cell surface MUC1 with galectin-3 induces changes of MUC1 cell surface 

localization and increases MUC1-EGFR interaction. This leads to an increase of EGFR 

homo-/hetero-dimerization and subsequently increased EGFR activation and downstream 

signalling. This effect of galectin-3 occurs only with the full length but not the truncated 

galectin-3 form that lacks its N-terminal domain responsible for galectin-3-mediated receptor 

clustering. Thus, expression of MUC1 promotes EGFR activation and its interaction with 

galectin-3 enhances EGFR dimerization and activation in epithelial cancer cells.  

 

MUC1 is a type I transmembrane mucin protein and is ubiquitously expressed on the surface 

of epithelial cells. Over-expression of MUC1 is a common feature of epithelial cancer cells40. 

MUC1 is reported to be associated with EGFR in epithelial cancer cells such as breast28, 41, 

pancreatic16, endometrial14 and lung cells42. Blocking MUC1-C terminal dimerization with a 

cell-penetrating peptide43 or siRNA silencing MUC1-C expression44 has been shown to 

suppress EGFR activation-associated cell signalling and survival in non-small cell lung 

cancer cells. Interaction of MUC1 with EGFR in the nucleus of breast epithelial cancer cells 

was shown to promote accumulation of chromatin-bound EGFR and co-localization of EGFR 

with phosphorylated RNA polymerase II28. The present study shows that MUC1 expression 

increases EGF-induced EGFR activation in human breast and colon cancer cells. Depletion of 

either the MUC1 intracellular or extracellular domain could only partly abolish MUC1-

associated effect on EGFR activation. This suggests that while both the MUC1 cytoplasmic 
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and extracellular domains contribute to EGFR activation, some of the effect mediated by the 

MUC1 intra- and extra-cellular domain on EGFR activation is also relatively independent. 

The fact that depletion of the MUC1 extracellular domain resulted in greater reduction of 

MUC1-associated EGFR activation than depletion of the MUC1 intracellular domain 

indicates that the predominate influence of MUC1 on EGFR activation derives from its 

extracellular domain. MUC113 and EGFR45 have both been shown to be associated with lipid 

rafts on cell membrane. It is possible that the expression of MUC1 and its association with 

EGFR in the lipid raft on the cell surface might increase the proximity of EGFR molecules in 

the microdomains of lipid raft for them to be in a better position to form homo-/hetero-dimers 

in response to ligand banding. 

 

Binding of galectin-3 to cell surface MUC1 is seen in this study to markedly increase EGFR 

activation and this effect requires not only the galectin-3 C-terminal CRD domain but also its 

N-terminal ligand polarization domain. Interaction between MUC1 and full length galectin-3 

is known to induce MUC1 cell surface polarization11, 26, 27. The effect of galectin-3 on MUC1 

cell surface localization was indeed visible in this study, irrespective of the presence or 

absence of EGF (Fig 8). However, galectin-3 presence enhances EGFR activation only when 

EGF is also present (Fig 5, 6). This indicates that galectin-3 cannot activate EGFR without 

the presence of an EGFR ligand. MUC1 cell surface polarization induced by MUC1-galectin-

3 interaction has shown previously to expose underlying smaller cell surface molecules11, 26, 

27. The discovery that EGF showed much weaker effect on EGFR activation in the MUC1-

negative than in the positive cells (Fig 2-5), irrespective of the presence of galectin-3, 

indicates that exposure of cell surface EGFR for easy EGF access is unlikely a mechanism of 

the MUC1-galectin-3 interaction-associated EGFR activation.     
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MUC1 co-immunoprecipitation showed a weak presence of EGFR in MUC1 

immunoprecipitates but a substantial increase after addition of galectin-3, with or without the 

presence of EGF (Fig 7E). This, together with the discovery that the presence of galectin-3 

alone did not induce EGFR dimerization, suggesting that galectin-3-MUC1 interaction is 

essential for galectin-3-associated, EGF-induced EGFR activation. The importance of 

galectin-3-mediated change of MUC1 cell surface localization in EGFR activation is 

supported by the discovery that the presence of a truncated form of galectin-3 (galectin-3C), 

which lacks the N-terminal domain responsible for galectin-3-induced ligand clustering hence 

could not induce MUC1 polarization, did not show any effect on EGFR dimerization and 

activation or ERK signalling, in the presence of EGF in MUC1-positive cells (Fig 5-7).   

 

An earlier study has proposed formation of a bridge formed by galectin-3 between MUC1 

and EGFR in cancer cells44. In our study, very minimal galectin-3 was co-

immunoprecipitated with EGFR and addition of exogenous galectin-3 also showed no effect 

on EGFR association with galectin-3 and in the cells (Fig 7F). Addition of galectin-3 also did 

not show any effect on EGFR phosphorylation, EGFR dimerization, or ERK activation in the 

MUC1-positive cells in the absence of EGF, nor did it show any effect on EGFR activation in 

the MUC1-negative cells even in the presence of EGF (Fig 2-7). These indicate that a direct 

binding of galectin-3 to EGFR, even if it occurs, does not contribute to galectin-3-MUC1-

associated EGFR dimerization and activation in those cells. It is noted that a recent study has 

reported a role of galectin-3 in promoting spheroid formation of lung cancer cells through 

activation of EGFR39. Although that study did not identify the galectin-3 binding ligand 

related to the effect, their discovery of the requirement of the galectin-3 carbohydrate 

recognition domain in its effect is broadly in keeping with an effect of galectin-3-MUC1 
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interaction on EGFR activation, which requires galectin-3 CRD domain, shown in the present 

study.  

 

In this study, EGF was seen to retain certain degree of its ability to induce EGFR activation, 

although to a less degree in comparison to full-length MUC1-expressing cells, in both 

MUC1-extracellular and -intracellular domain depleted cells (Fig 2 and 3).  This suggests that 

the MUC1-extracellular and intracellular domains can have independent actions in MUC1-

associated EGFR activity. This is in keeping with previous studies showing that the MUC1 

extracellular43 and cytoplasmic44 domains can either interact with EGFR and affect EGFR 

activity. Interestingly, although our cell surface cross-linking experiments using BS3 revealed 

strong induction of EGFR dimerization in cell response to EGF and galectin-3, higher 

molecular weight MUC1-EGFR complex were not observed (Fig 7). MUC1 is a highly 

glycosylated protein with carbohydrates accountable for >50% of its molecular weight1. The 

long and complex sugar chains of MUC1 are highly likely involved in the cell surface 

MUC1-EGFR interaction hence the crosslinker used in this study, which crosslinks protein-

protein, might not be able to effectively crosslink MUC1-EGFR on the cell surface.  

 

It was found in this study that the contribution of endogenous cell surface galectin-3 to EGFR 

activation is minimal in this cell culture setting. The in vitro cell culture model in this study 

was very short term (one day culture in normal medium plus overnight culture in fresh 

serum-free medium). Our previous study has shown that galectin-3 secretion in these cells in 

such a short term cell culture condition is minimal27. In cancers, however, galectin-3 is 

typically constantly secreted and could reach higher levels which would impact on EGFR 

activation by interaction with cancer-associated MUC1.  Moreover, the concentration of 

exogenous galectin-3 used in this study is close to the pathological level of circulating 
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galectin-3 in metastatic cancer patients shown in our previous study24. The impact of 

exogenous galectin-3 on EGFR activation via interaction with MUC1 reported in this study 

will therefore be particularly relevant to circulating tumour cells present during metastasis. 

 

EGFR activation on the cell membrane is known to trigger activation of an array of 

intracellular signalling pathways17 including commonly Ras/MEK/ERK signalling activation.  

EGFR activation induced by either MUC1 expression or by MUC1-galectin-3 interaction is 

shown in this study to be accompanied by an increase of ERK activation. It is noted that in 

addition to increase EGFR activation, galectin-3-MUC1 interaction also causes a prolonged 

activation of EGFR and ERK activation (Fig 5). It is generally believed that EGFR activation 

is terminated primarily through endocytosis of the receptor-ligand complex which are either 

degraded in the endosomes or recycled to the cell surface. It has been reported that if recycled 

EGFR is unable to reach the cell surface or to the lysosomal compartment but accumulates in 

the early endosomes, it will lead to prolonged signalling and increased activation of ERK46.  

This does seem to be supported in our study. We found that following EGFR activation, more 

EGFR was seen to be located in a clustered pattern inside the cells in the galectin-3/EGF 

treated cells than in EGF alone treated cells (Fig 8). There was a much weaker EGFR cell 

surface localization in the galectin-3/EGFR treated cells than in the other groups including 

EGF-alone treated cells. This indicates that the galectin-3/MUC1-mediated EGFR activation 

and subsequent EGFR endocytosis is associated with slower recycling of EGFR to the cell 

surface. This may provide an explanation for the prolonged activation of EGFR and ERK in 

those cells (Fig 5). This is also in keeping with an earlier study showing that MUC1 

expression inhibits EGFR degradation in response to ligand binding but was accompanied by 

an increase of EGFR internalization in breast epithelial cells47.   
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We noted that the presence of EGFR phosphorylation inhibitor lapatinib completely inhibited 

EGFR phosphorylation (Fig 6A and B) but detectable level,  similar as the controls,  of ERK 

activity remained in the cells irrespective of the presence or absence of EGF (Fig 6C and D). 

This indicates that endogenous, non-EGFR-related ERK activity exists in the cells. ERK is a 

one of the vital signalling pathways in cell proliferation and is known to be regulated by a 

variety of growth factors and molecules48. Expressions of either galectin-316, 32, 49 or MUC150 

in cancer cells has been shown to induce ERK activation. It is most likely therefore the 

inability of lapatinib to completely inhibit ERK activity in the cells is due to the existence of 

non-EGFR-related actions of endogenous molecules such as galectin-3, MUC1 or other 

molecules expressed or secreted by the cells.     

 

EGFR represents a key therapeutic target for cancer treatment. Development of anti-EGFR 

strategies is a crucial area of clinical study for the treatment of solid tumours. Currently, main 

strategies include monoclonal antibodies directed towards the extracellular domain of EGFR, 

small molecule tyrosine kinase inhibitors targeting the catalytic kinase domain of EGFR and 

strategies to disrupt receptor trafficking to the cell surface. The discovery in this study that 

the expression of MUC1 and its interaction with galectin-3 promotes ligand-dependent EGFR 

activation has implications in EGFR-targeted therapies in cancer treatment. MUC1 and 

galectin-3 are both well known to be commonly over-expressed by solid tumours. Over-

expressions of MUC1 and galectin-3 and their increased interaction on EGFR activation may 

therefore not only have an influence on EGFR-mediated tumourigenesis and cancer 

progression, but may also have an impact on the effectiveness of EGFR-targeted therapy. For 

example, a closer localization of EGFR with MUC1 on the cell membrane induced by 

galectin-3-MUC1 interaction may limit the access of anti-EGFR antibodies to cell surface 

EGFR due to the massive size of MUC1 that easily protrudes over EGFR on the cell surface. 
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A slower recycling of EGFR to the cell surface induced by galectin-3-MUC1 interaction may 

also limit the treatment effectiveness of anti-EGFR antibody as well as kinase inhibitors. It is 

possible therefore that a combined therapy that targets EGFR as well as galectin-3 or MUC1 

may improve treatment effectiveness in patients who have higher expressions of galectin-3 

and MUC1.   

 

Thus, MUC1 expression and its interaction with galectin-3 on cell surface both make 

important contribution to EGFR activation in epithelial cancer cells by promoting ligand-

induced EGFR dimerization and activation. As over-expression of MUC1 and over-

expression of galectin-3 are both common in epithelial cancer cells, the influence of MUC1 

expression and cell surface MUC1-galectin-3 interaction on EGFR activation likely makes 

important contribution to EGFR-associated tumorigenesis and tumour progression and also to 

the treatment effectiveness of EGFR-targeted therapy.  
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Materials and methods 

Materials 

Antibodies against p-EGFR (SC-23420) EGFR (SC-03), p-ERK1/2(SC-7383) and ERK1/2 

(SC-94), Protein A/G plus agarose beads were purchased from Santa Cruz Biotechnology, 

Santa Cruz, CA. Anti-EGFR antibody used in confocal microscopy and for 

immunoprecipitation (DB81) was purchased from New England Bio-Labs, Ipswich, MA. 

Anti-EGFR antibody (500-p306) and recombinant human EGF (AF-100-15) was from 

PeproTech rocky Hill, NJ. Bis(sulfosuccinimidyl) substrate (BS3) crosslinker was purchased 

from Life Technology Ltd, Waltham, MA. Lapatinib was purchased from Sigma-Aldrich. 

B27.29 anti-MUC1 antibody was kindly provided by Dr. Mark Reddish (Biomira, Edmonton, 

Canada) and CT2 anti-MUC1 antibody were kindly provided by Prof Sandra Gendler (Mayo 

Clinic, Scottsdale, AR). 

 

Cell lines 

Human colon cancer HCT116 cells were obtained from European Collection of Cell Cultures 

(Salisbury, UK) and were cultured in McCoy’s 5a medium. MUC1-positive transfectants 

(HCA1.7+), MUC1 negative revertants (HCA1.7-) and MUC1 cytoplasmic domain-depleted 

MUC1 mutant (HTD∆CT) cells from human breast HBL-100 epithelial cells were described 

previously5. The cell lines were last authenticated by DNA profiling (DNA Diagnostics 

Centre, London, UK) in 2014.  

 

MUC1 transfection  

MUC1 expression vectors for full-length MUC1, the extracellular domain-depleted MUC1 

(MUC1ΔTR), the cytoplasmic domain-depleted MUC1 (MUC1ΔCT) and control vector were 

kindly provided by Prof Tony Hollingsworth (University of Nebraska Medical Centre).  
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MUC1-expressing or control vector was pre-mixed with DNA Diluent and hydrated 

GenePOORTER-2 transfection reagent in serum-free medium for 10 min before addition to 

HCT116 cells in antibiotics-free and serum-containing DMEM in 24-well plates for 24 h at 

37 °C. The culture medium was replaced with serum-containing medium for 48 h before the 

cells were cultured in normal medium containing 600 μg/ml G418 for 7–10 days at 37 °C. 

Single-cell clones were selected with Cell Cloning Cylinders, proliferated and analysed for 

MUC1 expression by immunoblotting with anti-MUC1 antibodies B27.29 and CT2. 

 

Production of full length and truncated forms of recombinant galectin-3 

The cDNA sequence encoding full length human galectin-3 (Gal-3F) and C-terminal 

carbohydrate recognition domain (CRD) of galectin-3 (Gal-3C) (residues 116-250) were 

cloned into pETm11 expression vector with a His-tag. The recombinant plasmids were 

transformed into Bl21(DE3) E.coli and the transformants were selected with kanamycin. The 

protein expression was induced using 1mM IPTG when the cell density (OD600) reached 

approximately 0.6-0.85. Following induction, cells were incubated overnight at 18ºC before 

harvested by centrifugation. The cells were lysed in the presence of DNase using high 

pressure cell homogeniser. After centrifugation, the supernatant was applied onto a HisTrap 

FF 5ml column (GE Healthcare) and the His-tagged proteins were eluted with 150mM 

Imidazole. The collected fractions containing galectin-3 were incubated overnight with TEV 

protease to cleave the His tag and dialysed against His Trap buffer without Imidazole. After 

performing Reverse His Trap to remove the cleaved His tag and TEV protease from galectin-

3 solution, the proteins were further purified by size exclusion chromatography using 

Superdex 75 26/60 column. The purified Gal-3C was eluted between 220 and 260 ml and the 

Gal-3F between 190 and 220 ml. Purify of the recombinant proteins was determined by SDS-

PAGE to be >95%. 
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Immunoprecipitation  

Sub-confluent cells were incubated in serum-free medium containing 0.5mg/ml BSA 

overnight. The cells were washed with TBS and then incubated with EGF (20ng/ml), or EGF 

(20ng/ml) and galectin-3 (2ug/ml), or galectin-3 (2µg/ml) or 20 ng/ml BSA (control) in 

serum free media for 10 min at 370 C. The cells were washed with ice cold PBS, scraped and 

lysed on ice in PBS containing 1% Triton-X-100 and protease inhibitors (Calbiochem) for 30 

min before centrifugation at 10,000g at 40C for 15 minute. The supernatants were collected 

and pre-cleared by adding 20μl of the protein-A/G beads and incubating at 40C for 30 

minutes with gentle agitation. One ml lysates (protein concentration 2mg/ml) were incubated 

with anti-MUC1 (B27.29, 1 μg/ml), anti-EGFR (DB81) (2 μg/ml) antibody or isotype-

matched normal IgG at 40C with continuous agitation for 16 hours. Thirty μl of protein- A/G 

plus agarose beads were added for 4 hr and the beads were washed five times with ice cold 

PBS. Proteins were eluted from the beads by boiling in SDS-sample buffer for 10 minutes 

before application to SDS-PAGE and subsequent immunoblotting 

 

Immunoblotting  

Cellular proteins (cell lysate or immunoprecipitates) separated by SDS-PAGE were electro-

transferred to nitrocellulose membrane. The membranes were first incubated with specific 

primary antibodies [anti-p-EGFR (SC-23420), EGFR (SC-03), anti-pERK (SC-7383) and 

ERK (SC-94) at a concentration of 1:500.  Antibodies against MUC1 (B27.29, CT2) or actin 

at a concentration of 1:5000 were applied for 16 hr at 40C. The blots were washed 3 times 

with 0.05% Tween-20 in TBS before incubated with peroxidase-conjugated secondary 

antibody (1: 3000) for 1 hour. After 6 washes with 0.05% Tween-20 in TBS, the protein 

bands were developed using chemiluminescence Super Signal kit and visualized with 
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Molecular Imager® Gel Doc™ XR System (BioRad). The density of the protein bands was 

quantified using Imagelab version 3.0.1.  

 

EGFR activation 

Sub-confluent cells were incubated in serum-free medium containing 0.5mg/ml BSA 

overnight. The cells were washed with PBS before incubation with EGF (20ng/ml), EGF 

(20ng/ml) and galectin-3 (2ug/ml), galectin-3 (2 μg/ml), galectin-3C (2μg/ml) or BSA (2 

μg/ml) (control) in the absence or presence of EGFR inhibitor lapatinib  (2mM) for various 

time at 370C and 5% CO2. In some experiments, the cells were first incubated with 100mM 

lactose or PBS for 30 min before washing and application of EGF(20ng/ml) or EGF 

(20ng/ml) plus galectin-3 (2ug/ml) for various time at 370C. The cells were washed 

immediately with ice cold TBS before lysed with SDS-sample buffer and analysed by 

immunoblotting. 

 

Cell surface protein crosslinking  

Sub-confluent cells were incubated in serum-free medium overnight. The cells were washed 

twice with Ca2+ and MG2+ free PBS and then treated with serum free media containing BSA 

2μg/ml (control), EGF (20 ng/ml) without or with galectin-3 (2 μg/ml) or galectin-3C (2 

μg/ml) for 10 minute at 370 C and 5% CO2. The cells were then washed with ice cold Ca2+ 

and MG2+ free PBS and incubated with 3mM BS3 crosslinker in Ca2+ and MG2+ free PBS on 

ice for 20 minute.  Excess BS3 was quenched with 250mM glycine in PBS for 5 minutes at 40 

C. The cells were washed three times with ice cold PBS, lysed in SDS- sample buffer and 

analysed by immunoblotting with antibodies against EGFR.  

 

Confocal microscopy 
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Sub-confluent cells grown on glass coverslips in 24-well plates were incubated in serum-free 

at 37C overnight. The cells were treated with BSA (2 μg/ml) (control), EGF (20 ng/ml) 

without or with galectin-3 (2ug/ml) for 10 minute at 370 C. The cells were washed with ice 

cold PBS and fixed with 4% paraformaldehyde. The cells were then washed again with PBS 

and probed with anti-MUC1 B27.29 (1 μg /ml) or anti-EGFR (D38B1) (2 μg/ml) for 2 hours 

at room temperature. After two washes with PBS, FITC-conjugated anti-mouse or Alexa 

fluor 643 conjugated anti-rabbit antibodies were applied for 1 hour at room temperature. The 

cells were washed twice before being mounted using DAPI-containing fluorescent mounting 

media (Vector Laboratories, Burlingame,CA). The slides were analysed using a 3i confocal 

microscope (Marianas SDC, 3i Imaging) and Slidebook 6 Reader version 6.0.4 (Intelligent-

imaging). 
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Figure legends 

Fig 1. Generation of MUC1-expressing and mutant cells. (A) Schematic diagram of 

MUC1 transfectants. MUC1 expression in the transfectants of human colon cancer HCT116 

(B) the human breast epithelial HBL-100 (C) cells were analysed by immunoblotting with 

anti-MUC1 antibodies against the MUC1 extracellular domain (B27.27) and intracellular 

domain (CT2). The blots were also probed with anti-actin antibody for protein loading. 

 

Fig 2. Both MUC1 extra- and intra-cellular domains influence EGF-induced EGFR 

activation. MUC1 transfectants of human colon (A) and breast (B) epithelial cells were 

treated with 20 ng/ml EGF for various times before EGF/EGFR phosphorylation were 

analysed by immunoblotting. The blots were also probed with anti-actin antibody for protein 

loading.  Densitometry scanning of the bands from three independent experiments is shown 

in C and D and is expressed as ratio p-EGFR/EGF (mean ± SEM). The cells transfected with 

full-length MUC1 showed rapid EGFR phosphorylation while the MUC1 negative cells 

showed little response. Depletion of the MUC1 extracellular domain largely reduced, while 

depletion of the MUC1 intracellular domain moderately reduced, EGFR phosphorylation in 

comparison to the cells express full-length MUC1. Representative blots are shown in A and 

B.  

 

Fig 3. Galectin-3-MUC1 interaction promotes EGRF activation in human breast 

epithelial cells. HCA1.7+ (A), HCA1.7-(B) and HTD(∆CT) (C) cells were treated with EGF 

in the presence or absence of galectin-3 for various time before analysed by immunoblotting 

with antibodies against p-EGFR, EGFR and actin. Galectin-3 treatment increased EGFR 

activation of the full-length MUC1 transfectants HCA1.7+ and the MUC1 cytoplasmic 

domain-depleted transfectants HTD(∆CT), but not of the MUC1-negative revertants HCA1.7. 
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Densitometry scanning of the bands from three independent experiments is shown in D-F and 

is expressed as ratio p-EGFR/EGF (mean ± SEM).  Representative blots are shown in A, B 

and C.  

 

Fig 4. Galectin-3-MUC1 interaction enhances EGRF activation in human colon cancer 

cells. MUC1-expressing HCT116MUC1Full (A) and MUC1-negative HCT116MUC1neo (B) 

transfectants were treated with EGF in the absence or presence of galectin-3 for various time 

before analysed by immunoblotting with antibodies against p-EGFR, EGFR and actin. 

Galectin-3 treatment increased EGFR activation only in the MUC1-expressing but not 

MUC1-negative cells. In C and D, HCA1.7+ and HCT116MUC1Full cells were pre-treated with 

100mM lactose or PBS before introduction of EGF 20ng/ml and 2µg/ml galectin-3 for 

various time and subsequent analysis of EGFR phosphorylation and EGFR expression by 

immunoblotting. Densitometry scanning of the bands from three independent experiments is 

shown in E-H and is expressed as ratio p-EGFR/EGF (mean ± SEM).  Representative blots 

are shown in A-D.  

 

Fig 5. MUC1 expression- as well as MUC1-galectin-3 interaction-associated EGFR 

activation increases ERK activation.  MUC1-expressing HCA1.7+ (A) and HCT116MUC1Full 

(C), and MUC1-negative HCA1.7- (B) and HCT116MUC1neo (D) cells were treated with either 

20ng/ml EGF, 20 ng/ml EGF and 2µg/ml galectin-3, 2 µg/ml galectin-3 or 2µg/ml galectin-

3C for various times as in Fig3 and 4 before the expression of p-ERK1/2 and ERK1/2 were 

analysed by immunoblotting. EGF treatment increases ERK1/2 phosphorylation in the 

MUC1-expressing HCA1.7+ and HCT116MUC1Full cells. Introduction of galectin-3, but not 

galectin-3C, further enhances ERK1/2 activation in the MUC1-expressing cells but not in the 

MUC1-negative cells.  Representative blots from three independent experiments are shown. 
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Fig 6. Lapatinib inhibits EGFR and ERK activation induced by MUC1-galectin-3 

interaction.  HCT116MUC1Full (A and C) and HCA1.7+ (B and D)  cells were treated with and 

without EGF in the absence or presence of galectin-3, galectin-3C, EGFR inhibitor lapatinib 

for 10 min before analysed by immunoblotting with antibodies against p-EGFR, EGFR (A 

and B) or pERK1/2 and ERK1/2 (C and D). Densitometry analysis of the bands from two 

independent experiments was quantified and was presented as percentage changes of p-

EGFR/EGF and p-ERK1/2/ERK1/2, respectively, in comparison to the controls.   

 

Fig 7. Galectin-3-MUC1 interaction promotes EGFR dimerization and MUC1-EGFR 

interaction.  HCT116 MUC1Full (A), HCA1.7+ (C), HCT116MUC1 neo (B) and HC1.7- (D) were 

treated with and without EGF in the absence or presence of galectin-3 or galectin-3C for 10 

minutes before EGFR dimerization were analysed using BS3 cross linker and 

immunoblotting.  The presence of galectin-3, but not galectin-3C, increased EGFR homo- 

and hetero-dimerization in the MUC1-expressing, but not MUC1-negative, cells.  HCA1.7+ 

(E) or HCT116MUC1Full (F) cells were treated with PBS (control), EGF with or without 

galectin-3 for 10 minute followed by immunoprecipitation of the cells with B27.29 anti-

MUC1 antibody (E) or anti-EGFR antibody (F). The immunoprecipitates were analysed by 

immunoblotting with anti-EGFR, anti-MUC1 (B27.29) or anti-galectin-3 antibody. More 

EGFR was co-immunoprecipitated with MUC1 in cells treated with galectin-3 regardless of 

the presence of EGF (E). No difference of galectin-3 levels in the EGFR immunoprecipitates 

between cells treated with EGF and EGF plus galectin-3 (F).  

 

Fig 8. Galectin-3-MUC1 interaction enhances EGFR internalization.  HCT116MUC1Full 

(A) and HCA1.7+ (B) cells were treated with PBS (control), EGF with or without galectin-3 
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for 10 minutes before localization of MUC1 (green) and EGFR (red) were determined by 

fluorescent immunohistochemistry and analysed by confocal microscopy. The cell nucleus 

was stained with DAPI (blue). Galectin-3 changes MUC1 cell surface localization (as 

illustrated by disruption of uniform MUC1 localization). More intense and clustered EGFR 

localization inside the cells were seen in the galectin-3 treated cells than in the EGF alone 

treated cells in both cell types.  Representative images are shown.  
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