745 research outputs found
Graph theoretic analysis of protein interaction networks of eukaryotes
Thanks to recent progress in high-throughput experimental techniques, the
datasets of large-scale protein interactions of prototypical multicellular
species, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila
melanogaster, have been assayed. The datasets are obtained mainly by using the
yeast hybrid method, which contains false-positive and false-negative
simultaneously. Accordingly, while it is desirable to test such datasets
through further wet experiments, here we invoke recent developed network theory
to test such high throughput datasets in a simple way. Based on the fact that
the key biological processes indispensable to maintaining life are universal
across eukaryotic species, and the comparison of structural properties of the
protein interaction networks (PINs) of the two species with those of the yeast
PIN, we find that while the worm and the yeast PIN datasets exhibit similar
structural properties, the current fly dataset, though most comprehensively
screened ever, does not reflect generic structural properties correctly as it
is. The modularity is suppressed and the connectivity correlation is lacking.
Addition of interlogs to the current fly dataset increases the modularity and
enhances the occurrence of triangular motifs as well. The connectivity
correlation function of the fly, however, remains distinct under such interlogs
addition, for which we present a possible scenario through an in silico
modeling.Comment: 7 pages, 6 figures, 2 table
New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products
In this paper, we study the impact of the inclusion of the recently measured
beta decay properties of the Tc, Mo, and
Nb nuclei in an updated calculation of the antineutrino energy spectra
of the four fissible isotopes U, and Pu. These
actinides are the main contributors to the fission processes in Pressurized
Water Reactors. The beta feeding probabilities of the above-mentioned Tc, Mo
and Nb isotopes have been found to play a major role in the component
of the decay heat of Pu, solving a large part of the
discrepancy in the 4 to 3000\,s range. They have been measured using the Total
Absorption Technique (TAS), avoiding the Pandemonium effect. The calculations
are performed using the information available nowadays in the nuclear
databases, summing all the contributions of the beta decay branches of the
fission products. Our results provide a new prediction of the antineutrino
energy spectra of U, Pu and in particular of U for
which no measurement has been published yet. We conclude that new TAS
measurements are mandatory to improve the reliability of the predicted spectra.Comment: 10 pages, 2 figure
Large-scale inference and graph theoretical analysis of gene-regulatory networks in B. stubtilis
We present the methods and results of a two-stage modeling process that
generates candidate gene-regulatory networks of the bacterium B. subtilis from
experimentally obtained, yet mathematically underdetermined microchip array
data. By employing a computational, linear correlative procedure to generate
these networks, and by analyzing the networks from a graph theoretical
perspective, we are able to verify the biological viability of our inferred
networks, and we demonstrate that our networks' graph theoretical properties
are remarkably similar to those of other biological systems. In addition, by
comparing our inferred networks to those of a previous, noisier implementation
of the linear inference process [17], we are able to identify trends in graph
theoretical behavior that occur both in our networks as well as in their
perturbed counterparts. These commonalities in behavior at multiple levels of
complexity allow us to ascertain the level of complexity to which our process
is robust to noise.Comment: 22 pages, 4 figures, accepted for publication in Physica A (2006
Development of a quality assurance process for the SoLid experiment
The SoLid experiment has been designed to search for an oscillation pattern induced by a light sterile neutrino state, utilising the BR2 reactor of SCK circle CEN, in Belgium.
The detector leverages a new hybrid technology, utilising two distinct scintillators in a cubic array, creating a highly segmented detector volume. A combination of 5 cm cubic polyvinyltoluene cells, with (LiF)-Li-6:ZnS(Ag) sheets on two faces of each cube, facilitate reconstruction of the neutrino signals. Whilst the high granularity provides a powerful toolset to discriminate backgrounds; by itself the segmentation also represents a challenge in terms of homogeneity and calibration, for a consistent detector response. The search for this light sterile neutrino implies a sensitivity to distortions of around O(10)% in the energy spectrum of reactor (v) over bare. Hence, a very good neutron detection efficiency, light yield and homogeneous detector response are critical for data validation. The minimal requirements for the SoLid physics program are a light yield and a neutron detection efficiency larger than 40 PA/MeV/cube and 50% respectively. In order to guarantee these minimal requirements, the collaboration developed a rigorous quality assurance process for all 12800 cubic cells of the detector. To carry out the quality assurance process, an automated calibration system called CALIPSO was designed and constructed. CALIPSO provides precise, automatic placement of radioactive sources in front of each cube of a given detector plane (16 x 16 cubes). A combination of Na-22, Cf-252 and AmBe gamma and neutron sources were used by CALIPSO during the quality assurance process. Initially, the scanning identified defective components allowing for repair during initial construction of the SoLid detector. Secondly, a full analysis of the calibration data revealed initial estimations for the light yield of over 60 PA/MeV and neutron reconstruction efficiency of 68%, validating the SoLid physics requirements
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector
Originally designed as a new nuclear reactor monitoring device, the Nucifer
detector has successfully detected its first neutrinos. We provide the second
shortest baseline measurement of the reactor neutrino flux. The detection of
electron antineutrinos emitted in the decay chains of the fission products,
combined with reactor core simulations, provides an new tool to assess both the
thermal power and the fissile content of the whole nuclear core and could be
used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the
Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the
compact Osiris research reactor core (70MW) operating at the Saclay research
centre of the French Alternative Energies and Atomic Energy Commission (CEA),
the experiment also exhibits a well-suited configuration to search for a new
short baseline oscillation. We report the first results of the Nucifer
experiment, describing the performances of the 0.85m3 detector remotely
operating at a shallow depth equivalent to 12m of water and under intense
background radiation conditions. Based on 145 (106) days of data with reactor
ON (OFF), leading to the detection of an estimated 40760 electron
antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +-
18(syst) electron antineutrinos/day, in agreement with the prediction 277(23)
electron antineutrinos/day. Due the the large background no conclusive results
on the existence of light sterile neutrinos could be derived, however. As a
first societal application we quantify how antineutrinos could be used for the
Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version
Experimental evidence for subshell closure in He and indication of a resonant state in He below 1 MeV
NESTERThe spectroscopy of the unstable He and unbound He nuclei is investigated via the p(He, d) transfer reaction with a 15.7A MeV He beam from the SPIRAL facility. The emitted deuterons were detected by the telescope array MUST. The results are analyzed within the coupled-channels Born approximation framework, and a spectroscopic factor S=4.4±1.3 for neutron pickup to the He_g.s.^{8}^{7}E^*\GammaE^*$=2.9±0.1 MeV. Both are in agreement with previous separate measurements. The reproduction of the first excited state below 1 MeV would be a challenge for the most sophisticated nuclear theories
MAYA: An active-target detector for binary reactions with exotic beams
International audienceWith recent improvements in the production of radioactive beams in facilities such as SPIRAL at GANIL, a larger area of the nuclear chart is now accessible for experimentation. For these usually low-intensity and low-energy secondary beams, we have developed the new MAYA detector based on the active-target concept. This device allows to use a relatively thick target without loss of resolution by using the detection gas as target material. Dedicated 3D tracking, particle identification, energy loss and range measurements allow complete kinematic reconstruction of reactions taking place inside MAYA
Search for a long lived component in the reaction U+U near the Coulomb barrier
Expérience GANILInternational audienceWe performed an experiment to search for a signature of a long living component in the collision of U + U between 6.09 and 7.35A MeV. The experiment was performed at GANIL using the spectrometer VAMOS, tuned for observing reactions with kinematics similar to fusion-fission events. Theoretical calculations indicate that if a long living component would exist for this reaction, the most probable fission channel of such a giant system would be via the emissionof quasi-lead nuclei. We detected events of such a category in the focal plane of VAMOS. These events present an excitation function growing as a function of the bombarding energy
Toward automatic comparison of visualization techniques: Application to graph visualization
Many end-user evaluations of data visualization techniques have been run
during the last decades. Their results are cornerstones to build efficient
visualization systems. However, designing such an evaluation is always complex
and time-consuming and may end in a lack of statistical evidence and
reproducibility. We believe that modern and efficient computer vision
techniques, such as deep convolutional neural networks (CNNs), may help
visualization researchers to build and/or adjust their evaluation hypothesis.
The basis of our idea is to train machine learning models on several
visualization techniques to solve a specific task. Our assumption is that it is
possible to compare the efficiency of visualization techniques based on the
performance of their corresponding model. As current machine learning models
are not able to strictly reflect human capabilities, including their
imperfections, such results should be interpreted with caution. However, we
think that using machine learning-based pre-evaluation, as a pre-process of
standard user evaluations, should help researchers to perform a more exhaustive
study of their design space. Thus, it should improve their final user
evaluation by providing it better test cases. In this paper, we present the
results of two experiments we have conducted to assess how correlated the
performance of users and computer vision techniques can be. That study compares
two mainstream graph visualization techniques: node-link (\NL) and
adjacency-matrix (\MD) diagrams. Using two well-known deep convolutional neural
networks, we partially reproduced user evaluations from Ghoniem \textit{et al.}
and from Okoe \textit{et al.}. These experiments showed that some user
evaluation results can be reproduced automatically.Comment: 35 pages, 6 figures, 4 table
- …
