691 research outputs found

    Impacts of harmonic distortion from charging electric vehicles on low voltage networks

    Get PDF
    Paper focusing on the impacts of harmonic distortion from charging electric vehicles on low voltage networks

    The Rock and Boulder Gardens: a Rock Labyrinth in the Rocky Mountains

    Get PDF
    A rock labyrinth in the Devonian Palliser Formation, which dips at 24° in the direction 224°, occurs in the Front Ranges of the Rocky Mountains, 5 km northeast of the town of Jasper, Alberta. The area that composes the Rock and Boulder Gardens, 200 m by 500 m in size, is visible on aerial photographs of the Maligne Valley. The labyrinth is distinguished by the regular arrangement of large blocks of carbonates that are separated by widely-gaping joint planes. Kinematic freedom for the translation of these blocks was created when erosion of the south slope allowed blocks to slide out of the hanging Maligne Valley into the Athabasca Valley. The rock labyrinth is believed to have formed under periglacial conditions, driven by the build up of snow in open joints exerting a downslope force on blocks.Dans la Formation dévonienne de Palliser se trouve un labyrinthe rocheux orienté à 224°, dont la pente est de 24° ; il est situé dans les chaînes frontales des montagnes Rocheuses, à 5 km au nord-est de la ville de Jasper, en Alberta. La zone des Rock and Boulder Gardens, qui couvre une superficie de 200 par 500 m, est discernable sur les photographies aériennes de la vallée Maligne. Le labyrinthe se distingue par l’agencement régulier de grands blocs de carbonate séparés par des diaclases béantes. En rendant possible la translation des blocs, l’érosion de la pente sud a permis leur glissement de la vallée suspendue Maligne vers la vallée Athabasca. La formation du labyrinthe rocheux, survenue à la faveur de conditions périglaciaires, aurait été déclenchée par l’accumulation de neige dans les diaclases ouvertes, laquelle aurait exercé sur les blocs une pression vers le bas de la pente

    Meteor Entry Characterization in the Electric Arc Shock Tube

    Get PDF
    This poster summarizes potential test opportunities in Ames' EAST facility that would benefit studies of meteor and asteroid entry into Earth's atmosphere. The Electric Arc Shock Tube (EAST) facility produces high speed (up to Mach 50) shockwaves at prescribed velocities, densities and atmospheric compositions

    Radiative Heating on the After-Body of Martian Entry Vehicles

    Get PDF
    This paper presents simulations of the radiative heat flux imparted on the after-body of vehicles entering the Martian atmosphere. The radiation is dominated by CO2 bands emitting in the mid-wave infrared spectral region. This mechanism has traditionally not been considered in the design of past Mars entry vehicles. However, with recent analysis showing that the CO2 radiation can be greater than convective heating in the wake, and with several upcoming and proposed missions to Mars potentially affected, an investigation of the impact of this radiation is warranted. The focus of this paper is to provide a better understanding of the impact to aerothermal heating predictions and to provide comparisons between NASA's two main radiation codes, NEQAIR and HARA. The tangent slab approximation is shown to be overly conservative, by as much as 58 percent, for most back- shell body point locations compared to using a full angular integration method. However, due to the complexity of the wake flow, it is also shown that tangent slab does not always represent an upper limit for radiative heating. Furthermore, analysis in this paper shows that it is not possible to provide a general knock-down factor from the tangent slab results to those obtained using the more rigorous full integration method. When the radiative heating is accounted for on the after-body, the unmargined total heat flux can be as high as 14 watts per square centimeter

    Controls on sill and dyke-sill hybrid geometry and propagation in the crust: The role of fracture toughness

    Get PDF
    Analogue experiments using gelatine were carried out to investigate the role of the mechanical properties of rock layers and their bonded interfaces on the formation and propagation of magma-filled fractures in the crust. Water was injected at controlled flux through the base of a clear-Perspex tank into superposed and variably bonded layers of solidified gelatine. Experimental dykes and sills were formed, as well as dyke-sill hybrid structures where the ascending dyke crosses the interface between layers but also intrudes it to form a sill. Stress evolution in the gelatine was visualised using polarised light as the intrusions grew, and its evolving strain was measured using digital image correlation (DIC). During the formation of dyke-sill hybrids there are notable decreases in stress and strain near the dyke as sills form, which is attributed to a pressure decrease within the intrusive network. Additional fluid is extracted from the open dykes to help grow the sills, causing the dyke protrusion in the overlying layer to be almost completely drained. Scaling laws and the geometry of the propagating sill suggest sill growth into the interface was toughness-dominated rather than viscosity-dominated. We define KIc* as the fracture toughness of the interface between layers relative to the lower gelatine layer KIcInt / KIcG. Our results show that KIc* influences the type of intrusion formed (dyke, sill or hybrid), and the magnitude of KIcInt impacted the growth rate of the sills. KIcInt was determined during setup of the experiment by controlling the temperature of the upper layer Tm when it was poured into place, with Tm < 24 °C resulting in an interface with relatively low fracture toughness that is favourable for sill or dyke-sill hybrid formation. The experiments help to explain the dominance of dykes and sills in the rock record, compared to intermediate hybrid structures

    Predicting the cost of a 24 V soluble lead flow battery optimised for PV applications

    Get PDF
    Providing reliable electricity from small-scale renewable power is an important challenge for emerging economies. The soluble lead flow battery (SLFB) is a promising battery for this application, as it has a simple architecture making it relatively robust, and a lifetime of 2000 cycles demonstrated at the cell level. Also, the electrolyte is manufacturable directly from spent lead acid batteries. There is a need for techno-economic models to allow the cost/performance of a complete system to be defined and optimised. Such a model is defined here for the first time and used in a multi-objective optimisation to design a 24 V system for a charging hub in Sierra Leone. A 4 h duration was found to be optimal, and electrolyte for a 3.5 kW/14 kWh system would fit in a 1000 L IBC. Methanesulfonic acid was found to be the largest cost component of the 4 h system, with graphitic bipolar plates next. Both have low raw material costs, and in an optimistic scenario a total component cost of <£50/kWh would be achieved, half that of current NMC Li-ion cells. The greatest technical risk to achieving low cost is deposit thickness of lead dioxide. This important research gap should be addressed

    Plasma Science in Planetary Entry

    Get PDF
    Spacecraft entering a planetary atmosphere dissipate a great deal of energy into the surrounding gas. In the frame of reference of the vehicle, the atmospheric gas suddenly decelerates from hypersonic (Mach ~5-50) to subsonic velocities. The kinetic energy of the gas is rapidly converted to thermal and chemical energy, forming a bow shock behind which a plasma with energies on the order of one electron volt (eV) is produced. The resulting shock layer relaxes from strong thermal non-equilibrium that is translationally hot but internally cold and un-ionized toward a thermochemically equilibrated plasma over a distance of a few centimeters. Composition is dependent upon the planetary atmosphere Air for Earth, CO2/N2 for Mars and Venus, N2/CH4 for Titan and H2/He/CH4 for Saturn, Neptune and Jupiter. Typical velocities of entry may range from 3-7 km/s (4-25 MJ/kg) for Titan/Mars, 8-14 km/s (30-100 MJ/kg) for Earth/Venus, and 25-40 km/s (300-800 MJ/kg) for outer planets. The equilibrium plasmas produced from these conditions are highly dissociated (up to and above 99%) and ionized (0.1- 15%), with temperatures from 7,000-15,000K and pressures from 0.1-1.0 bar. Understanding the behavior of these plasmas the way in which they approach equilibrium, how they radiate, and how they interact with materials is an active area of research necessitated by requirements to predict and test the performance of thermal protection systems (TPS) that enable spacecraft to deliver scientific instruments, and people, to foreign worlds and back to Earth. The endeavor is a multi-physics problem, with key processes highlighted in Fig. 1. This white paper describes the current state of the art in simulating shock layer plasmas both computationally and in ground test facilities. Gaps requiring further research and development are identified

    Radial artery vasomotor function following transradial cardiac catheterisation

    Get PDF
    AIMS: To determine the reproducibility of flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD) in the assessment of radial artery vasomotor function, and to examine the effect of transradial catheterisation on radial artery injury and recovery. METHODS: Radial artery FMD and NMD were examined in 20 volunteers and 20 patients on four occasions (two visits at least 24 hours apart, with two assessments at each visit). In a further 10 patients, radial artery FMD was assessed in the catheterised arm prior to, at 24 hours and 3 months following cardiac catheterisation. RESULTS: There were no differences in baseline radial artery diameter (2.7±0.4 mm vs 2.7±0.4 mm), FMD (13.4±6.4 vs 12.89±5.5%) or NMD (13.6±3.8% vs 10.1±4.3%) between healthy volunteers and patients (p>0.05 for all comparisons). Mean differences for within and between day FMD were 2.53% (95% CIs −15.5% to 20.5%) and −4.3% (−18.3% to 9.7%) in patients. Compared to baseline, radial artery FMD was impaired at 24 hours (8.7±4.1% vs 3.9±2.9%, p=0.015) but not 3 months (8.7±4.1% vs 6.2±4.4, p=0.34) following transradial catheterisation. CONCLUSIONS: Radial FMD is impaired early after transradial catheterisation but appears to recover by 3 months. While test–retest variability was demonstrated, our findings suggest that transradial access for cardiac catheterisation may afford a potential model of vascular injury and repair in vivo in man

    Evaporite sinkholes of the Friuli Venezia Giulia region (NE Italy)

    Get PDF
    Sinkholes are common in the Friuli Venezia Giulia (FVG) Region (NE Italy), where the presence of karstifiable rocks favours their occurrence accelerated by intense rainfalls. Their existence has been reported since the end of the 1800s along the Tagliamento Valley, in correspondence with the mantled evaporites (gypsum). Furthermore, tens of evaporite sinkholes have been documented on the reliefs adjacent to the village of Sauris and along the narrow W\u2013Eoriented valleys, where regional faults have played a major role in their spatial distribution. This paper reports for the first time an inventory of the sinkholes affecting the evaporites of the FVG Region. These phenomena were mapped and categorised using a genetic classification. The main output is an A0-format map, which incorporates a 1:50,000 scale Sinkhole Inventory Map (SIM). The SIM encompasses 552 sinkholes. The cover suffosion sinkholes are the most abundant, followed by bedrock collapses. There is a clear prevalence of the circular shape (65%) over other shapes. Diameters are 1\u2013140 m, with depths ranging 0.1\u201340 m with a mean value of 4.5 m. The SIM can motivate regional planning authorities to perform further investigations aimed to understand the geomorphological evolutions of these phenomena

    The Entry Descent and Landing Instrumentation (MEDLI2) Suite for the Mars 2020 Mission

    Get PDF
    This presentation will discuss the current state of each of the main measurements systems for MEDLI2. The first system is a network of pressure transducers, the Mars Entry Atmospheric Data System (MEADS). Improving upon MEDLI, separate MEDLI2 pressure transducers span the measurement range suitable for both hypersonic and supersonic flows. The MEADS will also measure pressure on the backshell of the vehicle to better characterize the contribution of backshell pressure on the overall forces and moments on the entry probe. The second system is the thermal instrumentation, or Mars Instrumented Sensor Plugs. This system includes a network of high-temperature thermocouples embedded in the thermal protection system across the heatshield and backshell. The MISP also includes two types of sensors for directly measuring incident heatflux on the backshell of the vehicle. In addition, a radiometer is included on the backshell to measure radiative heating. The presentation will also cover the current state of the MEDLI2 hardware, expected environments that will be measured, and data analysis techniques being developed to infer vehicle entry performance from both the MISP and MEADS sensor systems
    • …
    corecore