650 research outputs found

    Approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon with inner voids

    Full text link
    We have performed an approximate ab initio calculation of vibrational properties of hydrogenated amorphous silicon (a-Si:H) using a molecular dynamics method. A 216 atom model for pure amorphous silicon (a-Si) has been employed as a starting point for our a-Si:H models with voids that were made by removing a cluster of silicon atoms out of the bulk and terminating the resulting dangling bonds with hydrogens. Our calculation shows that the presence of voids leads to localized low energy (30-50 cm^{-1}) states in the vibrational spectrum of the system. The nature and localization properties of these states are analyzed by various visualization techniques.Comment: 15 pages with 6 PS figures, to appear in PRB in December 199

    IGEC2: A 17-month search for gravitational wave bursts in 2005-2007

    Get PDF
    We present here the results of a 515 days long run of the IGEC2 observatory, consisting of the four resonant mass detectors ALLEGRO, AURIGA, EXPLORER and NAUTILUS. The reported results are related to the fourfold observation time from Nov. 6 2005 until Apr. 14 2007, when Allegro ceased its operation. This period overlapped with the first long term observations performed by the LIGO interferometric detectors. The IGEC observations aim at the identification of gravitational wave candidates with high confidence, keeping the false alarm rate at the level of 1 per century, and high duty cycle, namely 57% with all four sites and 94% with at least three sites in simultaneous observation. The network data analysis is based on time coincidence searches over at least three detectors: the four 3-fold searches and the 4-fold one are combined in a logical OR. We exchanged data with the usual blind procedure, by applying a unique confidential time offset to the events in each set of data. The accidental background was investigated by performing sets of 10^8 coincidence analyses per each detector configuration on off-source data, obtained by shifting the time series of each detector. The thresholds of the five searches were tuned so as to control the overall false alarm rate to 1/century. When the confidential time shifts was disclosed, no gravitational wave candidate was found in the on-source data. As an additional output of this search, we make available to other observatories the list of triple coincidence found below search thresholds, corresponding to a false alarm rate of 1/month.Comment: 10 pages, 8 figures Accepted for publication on Phys. Rev.

    Search for correlation between GRB's detected by BeppoSAX and gravitational wave detectors EXPLORER and NAUTILUS

    Get PDF
    Data obtained during five months of 2001 with the gravitational wave (GW) detectors EXPLORER and NAUTILUS were studied in correlation with the gamma ray burst data (GRB) obtained with the BeppoSAX satellite. During this period BeppoSAX was the only GRB satellite in operation, while EXPLORER and NAUTILUS were the only GW detectors in operation. No correlation between the GW data and the GRB bursts was found. The analysis, performed over 47 GRB's, excludes the presence of signals of amplitude h >=1.2 * 10^{-18}, with 95 % probability, if we allow a time delay between GW bursts and GRB within +-400 s, and h >= 6.5 * 10^{-19}, if the time delay is within +- 5 s. The result is also provided in form of scaled likelihood for unbiased interpretation and easier use for further analysis.Comment: 14 pages, 7 figures. Latex file, compiled with cernik.cls (provided in the package

    Results of the IGEC-2 search for gravitational wave bursts during 2005

    Get PDF
    The network of resonant bar detectors of gravitational waves resumed coordinated observations within the International Gravitational Event Collaboration (IGEC-2). Four detectors are taking part in this collaboration: ALLEGRO, AURIGA, EXPLORER and NAUTILUS. We present here the results of the search for gravitational wave bursts over 6 months during 2005, when IGEC-2 was the only gravitational wave observatory in operation. The network data analysis implemented is based on a time coincidence search among AURIGA, EXPLORER and NAUTILUS, keeping the data from ALLEGRO for follow-up studies. With respect to the previous IGEC 1997-2000 observations, the amplitude sensitivity of the detectors to bursts improved by a factor about 3 and the sensitivity bandwidths are wider, so that the data analysis was tuned considering a larger class of detectable waveforms. Thanks to the higher duty cycles of the single detectors, we decided to focus the analysis on three-fold observation, so to ensure the identification of any single candidate of gravitational waves (gw) with high statistical confidence. The achieved false detection rate is as low as 1 per century. No candidates were found.Comment: 10 pages, to be submitted to Phys. Rev.

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U

    Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts

    Get PDF
    Aims. A transient astrophysical event observed in both gravitational wave (GW) and electromagnetic (EM) channels would yield rich scientific rewards. A first program initiating EM follow-ups to possible transient GW events has been developed and exercised by the LIGO and Virgo community in association with several partners. In this paper, we describe and evaluate the methods used to promptly identify and localize GW event candidates and to request images of targeted sky locations. Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to Oct 20 2010), a low-latency analysis pipeline was used to identify GW event candidates and to reconstruct maps of possible sky locations. A catalog of nearby galaxies and Milky Way globular clusters was used to select the most promising sky positions to be imaged, and this directional information was delivered to EM observatories with time lags of about thirty minutes. A Monte Carlo simulation has been used to evaluate the low-latency GW pipeline's ability to reconstruct source positions correctly. Results. For signals near the detection threshold, our low-latency algorithms often localized simulated GW burst signals to tens of square degrees, while neutron star/neutron star inspirals and neutron star/black hole inspirals were localized to a few hundred square degrees. Localization precision improves for moderately stronger signals. The correct sky location of signals well above threshold and originating from nearby galaxies may be observed with ~50% or better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not included in v1. Accepted for publication in Astronomy & Astrophysic

    Ecological Invasion, Roughened Fronts, and a Competitor's Extreme Advance: Integrating Stochastic Spatial-Growth Models

    Full text link
    Both community ecology and conservation biology seek further understanding of factors governing the advance of an invasive species. We model biological invasion as an individual-based, stochastic process on a two-dimensional landscape. An ecologically superior invader and a resident species compete for space preemptively. Our general model includes the basic contact process and a variant of the Eden model as special cases. We employ the concept of a "roughened" front to quantify effects of discreteness and stochasticity on invasion; we emphasize the probability distribution of the front-runner's relative position. That is, we analyze the location of the most advanced invader as the extreme deviation about the front's mean position. We find that a class of models with different assumptions about neighborhood interactions exhibit universal characteristics. That is, key features of the invasion dynamics span a class of models, independently of locally detailed demographic rules. Our results integrate theories of invasive spatial growth and generate novel hypotheses linking habitat or landscape size (length of the invading front) to invasion velocity, and to the relative position of the most advanced invader.Comment: The original publication is available at www.springerlink.com/content/8528v8563r7u2742

    First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts

    Get PDF
    Aims. The detection and measurement of gravitational-waves from coalescing neutron-star binary systems is an important science goal for ground-based gravitational-wave detectors. In addition to emitting gravitational-waves at frequencies that span the most sensitive bands of the LIGO and Virgo detectors, these sources are also amongst the most likely to produce an electromagnetic counterpart to the gravitational-wave emission. A joint detection of the gravitational-wave and electromagnetic signals would provide a powerful new probe for astronomy. Methods. During the period between September 19 and October 20, 2010, the first low-latency search for gravitational-waves from binary inspirals in LIGO and Virgo data was conducted. The resulting triggers were sent to electromagnetic observatories for followup. We describe the generation and processing of the low-latency gravitational-wave triggers. The results of the electromagnetic image analysis will be described elsewhere. Results. Over the course of the science run, three gravitational-wave triggers passed all of the low-latency selection cuts. Of these, one was followed up by several of our observational partners. Analysis of the gravitational-wave data leads to an estimated false alarm rate of once every 6.4 days, falling far short of the requirement for a detection based solely on gravitational-wave data.Comment: 13 pages, 13 figures. For a repository of data used in the publication, go to: http://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=P1100065 Also see the announcement for this paper on ligo.org at: http://www.ligo.org/science/Publication-S6CBCLowLatency

    On a Generalization of Zaslavsky's Theorem for Hyperplane Arrangements

    Full text link
    We define arrangements of codimension-1 submanifolds in a smooth manifold which generalize arrangements of hyperplanes. When these submanifolds are removed the manifold breaks up into regions, each of which is homeomorphic to an open disc. The aim of this paper is to derive formulas that count the number of regions formed by such an arrangement. We achieve this aim by generalizing Zaslavsky's theorem to this setting. We show that this number is determined by the combinatorics of the intersections of these submanifolds.Comment: version 3: The title had a typo in v2 which is now fixed. Will appear in Annals of Combinatorics. Version. 2: 19 pages, major revision in terms of style and language, some results improved, contact information updated, final versio
    • 

    corecore