414 research outputs found
Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime
Mics Z, D'Angio A, Jensen SA, Bonn M, Turchinovich D. Density-dependent electron scattering in photoexcited GaAs in strongly diffusive regime. Applied Physics Letters. 2013;102(23).In a series of systematic optical pump–terahertz probe experiments, we study the density-dependent electron scattering rate in photoexcited GaAs in the regime of strong carrier diffusion. The terahertz frequency-resolved transient sheet conductivity spectra are perfectly described by the Drude model, directly yielding the electron scattering rates. A diffusion model is applied to determine the spatial extent of the photoexcited electron-hole gas at each moment after photoexcitation, yielding the time-dependent electron density, and hence the density-dependent electron scattering time. We find that the electron scattering time decreases from 320 to 60 fs, as the electron density changes from 1015 to 1019 cm−3
High-temperature ceramic matrix composites using microwave enhanced chemical vapor infiltration
To deliver the next generation of aerospace propulsion systems, major modifications to the materials used and their manufacture are required. High-temperature ceramic fibre reinforced ceramic matrix composites (HT-CMCs), specifically SiCf/SiC, have been identified as potential candidates to operate in the hostile aero-thermo-chemical environments experienced in service without compromising structural integrity, whilst keeping mass at a premium. Presently a lack of notably higher temperature properties and durability compared to Ni-super alloys, combined with high manufacturing costs, is preventing widespread utilisation of these composites. Current advanced manufacturing techniques are able to produce these HT-CMCs, which are starting to come into service but all of these techniques introduce compromising features, such as a residual silicon phase, thermal stresses or micro cracking in the matrix microstructure.
One of these advanced methods, chemical vapour infiltration (CVI), is an effective manufacturing route capable of creating near fully dense components with an extremely refined microstructure with little or no preform degradation and minimal residual stresses. CVI’s challenges, however, are three fold; i) processing uses isothermal heating rates so batch production times are typically 2 – 3 months; ii) premature pore closure results in a need for repeated machining stages to re-open the closed channels, which reduces process efficiency to between 5-10%; iii) as a consequence of the previous two points, associated costs are very high and the product expensive. Microwave energy (MCVI) has been proposed as a potential solution to heat the SiC fibre preform for CVI; it produces a favourable inverse temperature profile, meaning the temperature is hottest at the centre of the component in contrast to conventional CVI. This inverse profile initiates densification at the centre of the sample, thus avoiding surface porosity closure. It is expected that the use of a microwave-enhanced CVI processing routes could yield near fully dense products in as little as 72 – 96 hours.
This poster presents an update on the forming and characterising of the SiC matrix inside the SiC fabric preform (the latter made of Tyranno ZMI, UBE industries) using the MCVI technique. Kinetics, composition, densification profile, morphology and mechanism of growth of the SiC matrix have all been observed and analysed using a suite of characterisation techniques to see the effect of changing the processing variables. Transmission electron microscopy (TEM) and high resolution scanning electron microscopy (SEM) have been used to observe the degree of crystallinity of the resulting SiC and more specifically the grain growth mechanism and thus the resulting morphology. Wave dispersive spectroscopy (WDS) and Raman has been used to determine the (consistently near stoichiometric) Si to C ratio with an accuracy of ±2% due to a small contribution from traces of oxygen present, the results corroborating the data obtained using the TEM. Raman identified the deposit as ß-SiC and, after further analysis, a number of common polytopes were found including 3C, 6H/15R and 4H. Presented results suggest MCVI is a viable method of producing SiC composites that are potentially suitable for the next generation of aerospace material, though a better understanding of the extent to which full densification can be achieved is still required
Selective resuscitation in premature twins: an ethical analysis
Selective resuscitation refers to the practice of providing resuscitative efforts to one or some (but not all) infants born in the setting of multiple gestation. When one fetus is known to have a severe anomaly or severe growth restriction, parents are sometimes offered this option. In the setting of extreme prematurity, in the absence of an anomaly or severe growth restriction, parents are generally expected to make one unified decision for all the infants involved. The introduction of the Outcome Estimator, a tool that provides the ability to make individual outcome predictions for each fetus in a multiple gestation at borderline gestational age, based on contributing variables such as weight and gender, has led to the ethical dilemma of whether parents in this setting should also be offered the option of selective resuscitation. No convincing ethical argument for denying the parents the right to decide for each individual infant is apparent
Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.
Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection
Early-Onset Neonatal Sepsis 2015 to 2017, the Rise of Escherichia coli, and the Need for Novel Prevention Strategies
Importance: Early-onset sepsis (EOS) remains a potentially fatal newborn condition. Ongoing surveillance is critical to optimize prevention and treatment strategies.
Objective: To describe the current incidence, microbiology, morbidity, and mortality of EOS among a cohort of term and preterm infants.
Design, setting, and participants: This prospective surveillance study included a cohort of infants born at a gestational age (GA) of at least 22 weeks and birth weight of greater than 400 g from 18 centers of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network from April 1, 2015, to March 31, 2017. Data were analyzed from June 14, 2019, to January 28, 2020.
Main outcomes and measures: Early-onset sepsis defined by isolation of pathogenic species from blood or cerebrospinal fluid culture within 72 hours of birth and antibiotic treatment for at least 5 days or until death.
Results: A total of 235 EOS cases (127 male [54.0%]) were identified among 217 480 newborns (1.08 [95% CI, 0.95-1.23] cases per 1000 live births). Incidence varied significantly by GA and was highest among infants with a GA of 22 to 28 weeks (18.47 [95% CI, 14.57-23.38] cases per 1000). No significant differences in EOS incidence were observed by sex, race, or ethnicity. The most frequent pathogens were Escherichia coli (86 [36.6%]) and group B streptococcus (GBS; 71 [30.2%]). E coli disease primarily occurred among preterm infants (68 of 131 [51.9%]); GBS disease primarily occurred among term infants (54 of 104 [51.9%]), with 24 of 45 GBS cases (53.3%) seen in infants born to mothers with negative GBS screening test results. Intrapartum antibiotics were administered to 162 mothers (68.9%; 110 of 131 [84.0%] preterm and 52 of 104 [50.0%] term), most commonly for suspected chorioamnionitis. Neonatal empirical antibiotic treatment most frequently included ampicillin and gentamicin. All GBS isolates were tested, but only 18 of 81 (22.2%) E coli isolates tested were susceptible to ampicillin; 6 of 77 E coli isolates (7.8%) were resistant to both ampicillin and gentamicin. Nearly all newborns with EOS (220 of 235 [93.6%]) displayed signs of illness within 72 hours of birth. Death occurred in 38 of 131 infected infants with GA of less than 37 weeks (29.0%); no term infants died. Compared with earlier surveillance (2006-2009), the rate of E coli infection increased among very low-birth-weight (401-1500 g) infants (8.68 [95% CI, 6.50-11.60] vs 5.07 [95% CI, 3.93-6.53] per 1000 live births; P = .008).
Conclusions and relevance: In this study, EOS incidence and associated mortality disproportionately occurred in preterm infants. Contemporary cases have demonstrated the limitations of current GBS prevention strategies. The increase in E coli infections among very low-birth-weight infants warrants continued study. Ampicillin and gentamicin remained effective antibiotics in most cases, but ongoing surveillance should monitor antibiotic susceptibilities of EOS pathogens
Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at both individual and population levels
IntroductionT cells are involved in the early identification and clearance of viral infections and also support the development of antibodies by B cells. This central role for T cells makes them a desirable target for assessing the immune response to SARS-CoV-2 infection.MethodsHere, we combined two high-throughput immune profiling methods to create a quantitative picture of the T-cell response to SARS-CoV-2. First, at the individual level, we deeply characterized 3 acutely infected and 58 recovered COVID-19 subjects by experimentally mapping their CD8 T-cell response through antigen stimulation to 545 Human Leukocyte Antigen (HLA) class I presented viral peptides. Then, at the population level, we performed T-cell repertoire sequencing on 1,815 samples (from 1,521 COVID-19 subjects) as well as 3,500 controls to identify shared “public” T-cell receptors (TCRs) associated with SARS-CoV-2 infection from both CD8 and CD4 T cells.ResultsCollectively, our data reveal that CD8 T-cell responses are often driven by a few immunodominant, HLA-restricted epitopes. As expected, the T-cell response to SARS-CoV-2 peaks about one to two weeks after infection and is detectable for at least several months after recovery. As an application of these data, we trained a classifier to diagnose SARS-CoV-2 infection based solely on TCR sequencing from blood samples, and observed, at 99.8% specificity, high early sensitivity soon after diagnosis (Day 3–7 = 85.1% [95% CI = 79.9–89.7]; Day 8–14 = 94.8% [90.7–98.4]) as well as lasting sensitivity after recovery (Day 29+/convalescent = 95.4% [92.1–98.3]).DiscussionThe approaches described in this work provide detailed insights into the adaptive immune response to SARS-CoV-2 infection, and they have potential applications in clinical diagnostics, vaccine development, and monitoring
Investigating the non-specific effects of BCG vaccination on the innate immune system in Ugandan neonates: study protocol for a randomised controlled trial.
BACKGROUND: The potential for Bacillus Calmette-Guérin (BCG) vaccination to protect infants against non-mycobacterial disease has been suggested by a randomised controlled trial conducted in low birth-weight infants in West Africa. Trials to confirm these findings in healthy term infants, and in a non-West African setting, have not yet been carried out. In addition, a biological mechanism to explain such heterologous effects of BCG in the neonatal period has not been confirmed. This trial aims to address these issues by evaluating whether BCG non-specifically enhances the innate immune system in term Ugandan neonates, leading to increased protection from a variety of infectious diseases. METHODS: This trial will be an investigator-blinded, randomised controlled trial of 560 Ugandan neonates, comparing those receiving BCG at birth with those receiving BCG at 6 weeks of age. This design allows comparison of outcomes between BCG-vaccinated and -naïve infants until 6 weeks of age, and between early and delayed BCG-vaccinated infants from 6 weeks of age onwards. The primary outcomes of the study will be a panel of innate immune parameters. Secondary outcomes will include clinical illness measures. DISCUSSION: Investigation of the possible broadly protective effects of neonatal BCG immunisation, and the optimal vaccination timing to produce these effects, could have profound implications for public healthcare policy. Evidence of protection against heterologous pathogens would underscore the importance of prioritising BCG administration in a timely manner for all infants, provide advocacy against the termination of BCG's use and support novel anti-tuberculous vaccine strategies that would safeguard such beneficial effects. TRIAL REGISTRATION: ISRCTN59683017 : registration date: 15 January 2014
- …
