195 research outputs found

    The Uncertain Future of the Postgraduate-degree Life – A Commentary

    Get PDF
    Public health is an area where we will always need professionally-prepared people, but despite desperate needs to replace persons in an aging public health workforce, some students are concerned that there might not be a quality job for them in the foreseeable future. Perhaps now more than ever public health professional programs and schools need to devote resources toward career counseling and job placement

    Relationships between the Seasonal Variations of Macroinvertebrates, and Land Uses for Biomonitoring in the Xitiaoxi River Watershed, China

    Full text link
    The impacts of differences in watershed land uses, and differences in seasonality on benthic macroinvertebrate communities, were evaluated in 12 stream sites within the Xitiaoxi River watershed, China, from April 2009 to January 2010. The composition of macroinvertebrate community differed significantly among three land use types. Forested sites were characterized by high taxa richness, diversity and the benthic‐index of biotic integrity (B‐IBI), while farmland and urban disturbed stream sites presented contrary patterns. The percentage of urban land use, conductivity, dissolved oxygen, ammonia nitrogen and total phosphorus were the major drivers for the variations. The land use related water quality stress gradients of the four sampling seasons were determined by means of four independent Principal Component Analyses. The responses of macroinvertebrate community metrics, to anthropogenic stressors, were explored using Spearman Rank Correlation analyses. All the selected metrics, including total numbers of taxa, numbers of Ephemeroptera, Plecoptera and Trichoptera taxa, percentage of non‐insect abundance, percentage of scrapers abundance, Pielou’s evenness index, Simpson diversity index, and the Benthic Index of Biotic Integrity were correlated significantly with environmental gradients (PC1) in autumn. In other seasons such correlations were less pronounced. Our results imply that autumn is the optimal time to sample macroinvertebrate communities, and to conduct water quality biomonitoring in this subtropical watershed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92105/1/184_ftp.pd

    Degradation of native and exotic riparian plant leaf litter in a floodplain pond

    Get PDF
    1. A litter-bag experiment was undertaken in a pond on the margins of a large temperate floodplain in south-western France to assess the potential influence of the replacement of native by exotic riparian species on organic matter degradation. We determined initial litter chemical composition, breakdown rates and the invertebrate assemblages associated with the litter for five pairs of native dominant and exotic invasive species co-occurring at different stages along a successional gradient. 2. Litter chemical composition, breakdown rates and abundance and diversity of detritivorous invertebrates were similar for the exotic and native species overall. No overall changes in organic matter degradation can thus be predicted from the replacement of dominant natives by exotic invasives. Breakdown rates were primarily driven by the C⁄N ratio. 3. One invasive species (Buddleja davidii) showed significantly higher breakdown rates than its native counterpart (Populus nigra), resulting in the disappearance of leaf litter 6 months prior to the next litterfall. In some cases, therefore, invasion by exotic species may result in discontinuity of resource supply for decomposers

    Landscape Ecotoxicology of Coho Salmon Spawner Mortality in Urban Streams

    Get PDF
    In the Pacific Northwest of the United States, adult coho salmon (Oncorhynchus kisutch) returning from the ocean to spawn in urban basins of the Puget Sound region have been prematurely dying at high rates (up to 90% of the total runs) for more than a decade. The current weight of evidence indicates that coho deaths are caused by toxic chemical contaminants in land-based runoff to urban streams during the fall spawning season. Non-point source pollution in urban landscapes typically originates from discrete urban and residential land use activities. In the present study we conducted a series of spatial analyses to identify correlations between land use and land cover (roadways, impervious surfaces, forests, etc.) and the magnitude of coho mortality in six streams with different drainage basin characteristics. We found that spawner mortality was most closely and positively correlated with the relative proportion of local roads, impervious surfaces, and commercial property within a basin. These and other correlated variables were used to identify unmonitored basins in the greater Seattle metropolitan area where recurrent coho spawner die-offs may be likely. This predictive map indicates a substantial geographic area of vulnerability for the Puget Sound coho population segment, a species of concern under the U.S. Endangered Species Act. Our spatial risk representation has numerous applications for urban growth management, coho conservation, and basin restoration (e.g., avoiding the unintentional creation of ecological traps). Moreover, the approach and tools are transferable to areas supporting coho throughout western North America
    • 

    corecore