167 research outputs found

    Evolution and ecology of guineafowl

    Get PDF
    Includes bibliographies.By almost any definition, guineafowl (Numidinae) are characteristically African birds. This small subfamily (4-5 genera, 5-8 species) is endemic to, and possibly evolved, in Africa (Ghigi 1936). Nearly every major African biome and biotope has an associated guineafowl taxon (Crowe & Snow 1978). Guineafowl are sedentary birds (Chapin 1932; Elgood et al. 1973), and therefore should be more susceptible to local selection pressures than would be more mobile taxa (Ehrlich & Raven 1969). At least some inter- and intra-specific phenetic variation appears to be correlated with variation in the environment (Crowe & Snow 1978). In this dissertation, I investigate aspects of the evolution and ecology of guineafowl, and use the results of my analyses to formulate or test hypotheses concerning broad patterns of evolution and ecology of birds in Africa. Specifically, my seven aims are to: 1. re-evaluate the rather confused taxonomy of the subfamily, 2. produce a parsimonious phylogeny based on the analysis of shared derived Character-states, 3. develop models of speciation which are consistent with the above phylogeny and the likely geological and climatological history of Africa, 4. suggest a scheme of avifaunal zones based on the analysis of the distributions of, and phylogenetic relationships between recognized guineafowl taxa, 5. discover the possible adaptive significance of phenetic variation in polytypic guineafowl species, 6. demonstrate possible anatomical adaptations in the vascular system of the head and neck of Numida meleagris, 7. determine the likely mechanism of population limitation in N. meleagris. This dissertation consists of seven published or submitted papers which relate to one or more of the aims listed above

    Age- and sex-based variation in helminth infection of helmeted guineafowl (Numida meleagris) with comments on Swainson's spurfowl (Pternistis swainsonii) and Orange River francolin (Scleroptila levaillantoides)

    Get PDF
    Gastrointestinal tracts from 48 helmeted guineafowl (Numida meleagris), five Swainson's spurfowl (Pternistis swainsonii) and a single Orange River francolin (Scleroptila levaillantoides) were examined for helminth parasites. Twelve species of helminths were found in helmeted guineafowl, comprising six nematodes, five cestodes and a single acanthocephalan. Six species of nematodes were recovered from Swainson's spurfowl and a single nematode was recovered from the Orange River francolin. First-year guineafowl had more than twice the intensity of infection than did adult guineafowl, particularly regarding the acanthocephalan Mediorhynchus gallinarum, the caecal nematodes Subulura dentigera and S. suctoria, and the cestodes Octopetalum numida, Hymenolepis cantaniana and Numidella numida. Female guineafowl had significantly higher intensities of infection than males, especially concerning M. gallinarum, S. dentigera and N. numida and the nematode Gongylonema congolense. The recovery of the cestode Retinometra sp. from helmeted guineafowl constitutes a new host-parasite record

    Preclinical development of a bispecific TNFα/IL-23 neutralising domain antibody as a novel oral treatment for inflammatory bowel disease.

    Get PDF
    Anti-TNFα and anti-IL-23 antibodies are highly effective therapies for Crohn's disease or ulcerative colitis in a proportion of patients. V56B2 is a novel bispecific domain antibody in which a llama-derived IL-23p19-specific domain antibody, humanised and engineered for intestinal protease resistance, V900, was combined with a previously-described TNFα-specific domain antibody, V565. V56B2 contains a central protease-labile linker to create a single molecule for oral administration. Incubation of V56B2 with trypsin or human faecal supernatant resulted in a complete separation of the V565 and V900 monomers without loss of neutralising potency. Following oral administration of V900 and V565 in mice, high levels of each domain antibody were detected in the faeces, demonstrating stability in the intestinal milieu. In ex vivo cultures of colonic biopsies from IBD patients, treatment with V565 or V900 inhibited tissue phosphoprotein levels and with a combination of the two, inhibition was even greater. These results support further development of V56B2 as an oral therapy for IBD with improved safety and efficacy in a greater proportion of patients as well as greater convenience for patients compared with traditional monoclonal antibody therapies

    Carbohydrate Intake in the Etiology of Crohn's Disease and Ulcerative Colitis

    Get PDF
    Background: Diet may have a role in the etiology of inflammatory bowel disease. In previous studies, the associations between increased intakes of carbohydrates, sugar, starch, and inflammatory bowel disease are inconsistent. However, few prospective studies have investigated the associations between these macronutrients and incident Crohn's disease (CD) or ulcerative colitis (UC). Methods: A total of 401,326 men and women were recruited between 1991 and 1998. At recruitment, dietary intakes of carbohydrate, sugar, and starch were measured using validated food frequency questionnaires. The cohort was monitored identifying participants who developed incident CD or UC. Cases were matched with 4 controls, and odds ratios were calculated for quintiles of total carbohydrate, sugar, and starch intakes adjusted for total energy intake, body mass index, and smoking. Results: One hundred ten participants developed CD, and 244 participants developed UC during follow-up. The adjusted odds ratio for the highest versus the lowest quintiles of total carbohydrate intake for CD was 0.87, 95% CI = 0.24 to 3.12 and for UC 1.46, 95% CI = 0.62 to 3.46, with no significant trends across quintiles for either (CD, Ptrend = 0.70; UC, Ptrend = 0.41). Similarly, no associations were observed with intakes of total sugar (CD, Ptrend = 0.50; UC, Ptrend = 0.71) or starch (CD, Ptrend = 0.69; UC, Ptrend = 0.17). Conclusions: The lack of associations with these nutrients is in agreement with many case–control studies that have not identified associations with CD or UC. As there is biological plausibility for how specific carbohydrates could have an etiological role in inflammatory bowel disease, future epidemiological work should assess individual carbohydrates, although there does not seem to be a macronutrient effect

    Effects of conjugated linoleic acid on myogenic and inflammatory responses in a human primary muscle and tumor coculture model

    Full text link
    The antiproliferative and anti-inflammatory properties of conjugated linoleic acid (CLA) make it a potentially novel treatment in chronic inflammatory muscle wasting disease, particularly cancer cachexia. Human primary muscle cells were grown in coculture with MIA PaCa-2 pancreatic tumor cells and exposed to varying concentrations of c9,t11 and t10,c12 CLA. Expression of myogenic (Myf5, MyoD, myogenin, and myostatin) and inflammatory genes (CCL-2, COX-2, IL-8, and TNF-) were measured by real-time PCR. The t10,c12 CLA isomer, but not the c9,t11 isomer, significantly decreased MIA PaCa-2 proliferation by between 15% and 19%. There was a marked decrease in muscle MyoD and myogenin expression (78% and 62%, respectively), but no change in either Myf5 or myostatin, in myotubes grown in coculture with MIA PaCa-2 cells. CLA had limited influence on these responses. A similar pattern of myogenic gene expression changes was observed in myotubes treated with TNF- alone. Several-fold significant increases in CCL-2, COX-2, IL-8, and TNF- expression in myotubes were observed with MIA PaCa-2 coculture. The c9,t11 CLA isomer significantly decreased basal expression of TNF- in myotubes and could ameliorate its tumor-induced rise. The study provides insight into the anti-inflammatory and antiproliferative actions of CLA and its application as a therapeutic agent in inflammatory disease states.<br /

    Circulating Fatty Acids and Prostate Cancer Risk: Individual Participant Meta-Analysis of Prospective Studies

    Get PDF
    Background: Individual studies have suggested that some circulating fatty acids are associated with prostate cancer risk, but have not been large enough to provide precise estimates of associations, particularly by stage and grade of disease. Methods: Principal investigators of prospective studies on circulating fatty acids and prostate cancer were invited to collaborate. Investigators provided individual participant data on circulating fatty acids (weight percent) and other characteristics of prostate cancer cases and controls. Prostate cancer risk by study-specific fifths of 14 fatty acids was estimated using multivariable-adjusted conditional logistic regression. All statistical tests were two-sided. Results: Five thousand and ninety-eight case patients and 6649 control patients from seven studies with an average follow-up of 5.1 (SD = 3.3) years were included. Stearic acid (18:0) was inversely associated with total prostate cancer (odds ratio [OR] Q5 vs Q1 = 0.88, 95% confidence interval [CI] = 0.78 to 1.00, P trend = .043). Prostate cancer risk was, respectively, 14% and 16% greater in the highest fifth of eicosapentaenoic acid (20:5n-3) (OR = 1.14, 95% CI = 1.01 to 1.29, P trend = .001) and docosapentaenoic acid (22:5n-3) (OR = 1.16, 95% CI = 1.02 to 1.33, P trend = .003), but in each case there was heterogeneity between studies (P = .022 and P < .001, respectively). There was heterogeneity in the association between docosapentaenoic acid and prostate cancer by grade of disease (P = .006); the association was statistically significant for low-grade disease but not high-grade disease. The remaining 11 fatty acids were not statistically associated with total prostate cancer risk. Conclusion: There was no strong evidence that circulating fatty acids are important predictors of prostate cancer risk. It is not clear whether the modest associations of stearic, eicosapentaenoic, and docosapentaenoic acid are causal

    Thalamic deep brain stimulation modulates cycles of seizure risk in epilepsy

    Get PDF
    Chronic brain recordings suggest that seizure risk is not uniform, but rather varies systematically relative to daily (circadian) and multiday (multidien) cycles. Here, one human and seven dogs with naturally occurring epilepsy had continuous intracranial EEG (median 298 days) using novel implantable sensing and stimulation devices. Two pet dogs and the human subject received concurrent thalamic deep brain stimulation (DBS) over multiple months. All subjects had circadian and multiday cycles in the rate of interictal epileptiform spikes (IES). There was seizure phase locking to circadian and multiday IES cycles in five and seven out of eight subjects, respectively. Thalamic DBS modified circadian (all 3 subjects) and multiday (analysis limited to the human participant) IES cycles. DBS modified seizure clustering and circadian phase locking in the human subject. Multiscale cycles in brain excitability and seizure risk are features of human and canine epilepsy and are modifiable by thalamic DBS

    Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

    Get PDF
    Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact

    Cancer immunoediting by the innate immune system in the absence of adaptive immunity

    Get PDF
    Cancer immunoediting is the process whereby immune cells protect against cancer formation by sculpting the immunogenicity of developing tumors. Although the full process depends on innate and adaptive immunity, it remains unclear whether innate immunity alone is capable of immunoediting. To determine whether the innate immune system can edit tumor cells in the absence of adaptive immunity, we compared the incidence and immunogenicity of 3'methylcholanthrene-induced sarcomas in syngeneic wild-type, RAG2, and RAG2x γc mice. We found that innate immune cells could manifest cancer immunoediting activity in the absence of adaptive immunity. This activity required natural killer (NK) cells and interferon γ (IFN-γ), which mediated the induction of M1 macrophages. M1 macrophages could be elicited by administration of CD40 agonists, thereby restoring editing activity in RAG2x γc mice. Our results suggest that in the absence of adaptive immunity, NK cell production of IFN-γ induces M1 macrophages, which act as important effectors during cancer immunoediting

    Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event

    Get PDF
    The early Earth was characterized by the absence of oxygen in the ocean–atmosphere system, in contrast to the well-oxygenated conditions that prevail today. Atmospheric concentrations first rose to appreciable levels during the Great Oxidation Event, roughly 2.5–2.3 Gyr ago. The evolution of oxygenic photosynthesis is generally accepted to have been the ultimate cause of this rise, but it has proved difficult to constrain the timing of this evolutionary innovation. The oxidation of manganese in the water column requires substantial free oxygen concentrations, and thus any indication that Mn oxides were present in ancient environments would imply that oxygenic photosynthesis was ongoing. Mn oxides are not commonly preserved in ancient rocks, but there is a large fractionation of molybdenum isotopes associated with the sorption of Mo onto the Mn oxides that would be retained. Here we report Mo isotopes from rocks of the Sinqeni Formation, Pongola Supergroup, South Africa. These rocks formed no less than 2.95 Gyr ago in a nearshore setting. The Mo isotopic signature is consistent with interaction with Mn oxides. We therefore infer that oxygen produced through oxygenic photosynthesis began to accumulate in shallow marine settings at least half a billion years before the accumulation of significant levels of atmospheric oxygen
    corecore