74 research outputs found

    Thermally Triggered Hydrogel Injection Into Bovine Intervertebral Disc Tissue Explants Induces Differentiation Of Mesenchymal Stem Cells And Restores Mechanical Function.

    Get PDF
    We previously reported a synthetic LaponiteÂź crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O2 for 6 weeks. Viability of native NP cells and delivered MSCs was maintained. Furthermore hMSCs delivered via the L-pNIPAM-co-DMAc hydrogel differentiated and produced NP matrix components: aggrecan, collagen type II and chondroitin sulphate, with integration of the hydrogel with native NP tissue. In addition L-pNIPAM-co-DMAc hydrogel injected into collagenase digested bovine discs filled micro and macro fissures, were maintained within the disc during loading and restored IVD stiffness. The mechanical support of the L-pNIPAM-co-DMAc hydrogel, to restore disc height, could provide immediate symptomatic pain relief, whilst the delivery of MSCs over time regenerates the NP extracellular matrix; thus the L-pNIPAM-co-DMAc hydrogel could provide a combined cellular and mechanical repair approach

    Progenitor and stem cells for bone and cartilage regeneration

    Get PDF
    Research in regenerative medicine is developing at a significantly quick pace. Cell-based bone and cartilage replacement is an evolving therapy aiming at the treatment of patients who suffer from limb amputation, damaged tissues and various bone and cartilage-related disorders. Stem cells are undifferentiated cells with the capability to regenerate into one or more committed cell lineages. Stem cells isolated from multiple sources have been finding widespread use to advance the field of tissue repair. The present review gives a comprehensive overview of the developments in stem cells originating from different tissues and suggests future prospects for functional bone and cartilage tissue regeneration.The European Network of Excellence EXPERTISSUES (Project No. NMP3-CT-2004-500283), under which this work was carried out, is acknowledged

    Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities

    Get PDF
    Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported ñ from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program. The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/ 2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    Evaluation of the 'reconceptualising early mathematics learning' project

    Get PDF
    The Pattern and Structure Mathematics Awareness Project (PASMAP) has investigated the development of patterning and early algebraic reasoning among 4 to 8 year olds over a series of related studies. We assert that an awareness of mathematical pattern and structure enables mathematical thinking and simple forms of generalisation from an early age. The project aims to promote a strong foundation for mathematical development by focusing on critical, underlying features of mathematics learning. This paper provides an overview of key aspects of the assessment and intervention, and analyses of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas. A purposive sample of four large primary schools, two in Sydney and two in Brisbane, representing 316 students from diverse socio-economic and cultural contexts, participated in the evaluation throughout the 2009 school year and a follow-up assessment in 2010. Two different mathematics programs were implemented: in each school, two Kindergarten teachers implemented the PASMAP and another two implemented their regular program. The study shows that both groups of students made substantial gains on the ‘I Can Do Maths’ assessment and a Pattern and Structure Assessment (PASA) interview, but highly significant differences were found on the latter with PASMAP students outperforming the regular group on PASA scores. Qualitative analysis of students’ responses for structural development showed increased levels for the PASMAP students; those categorised as low ability developed improved structural responses over a relatively short period of time

    Developing the Pattern and Structure Assessment (PASA) interview to inform early mathematics learning

    Get PDF
    The Pattern and Structure Mathematical Awareness Program(PASMAP) stems from a 2-year longitudinal study on students’ early mathematical development. The paper outlines the interview assessment the Pattern and Structure Assessment(PASA) designed to describe students’ awareness of mathematical pattern and structure across a range of concepts. An overview of students’ performance across items and descriptions of their structural development are described

    An evaluation of the pattern and structure mathematics awareness program in the early school years

    Get PDF
    This paper reports a 2-year longitudinal study on the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on students’ mathematical development. The study involved 316 Kindergarten students in 17 classes from four schools in Sydney and Brisbane. The development of the PASA assessment interview and scale are presented. The intervention program provided explicit instruction in mathematical pattern and structure that enhanced the development of students’ spatial structuring, multiplicative reasoning, and emergent generalisations. This paper presents the initial findings of the impact of the PASMAP and illustrates students’ structural development
    • 

    corecore