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Abstract

Research in regenerative medicine is developing at a significantly quick pace. Cell-based bone and
cartilage replacement is an evolving therapy aiming at the treatment of patients who suffer from
limb amputation, damaged tissues and various bone and cartilage-related disorders. Stem cells are
undifferentiated cells with the capability to regenerate into one or more committed cell lineages.
Stem cells isolated from multiple sources have been finding widespread use to advance the field of
tissue repair. The present review gives a comprehensive overview of the developments in stem cells
originating from different tissues and suggests future prospects for functional bone and cartilage
tissue regeneration. Copyright  2009 John Wiley & Sons, Ltd.
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1. Introduction to bone and
regenerative capacity

Bones are characterized by patterns of microstructural
organization which govern the mechanical interaction
of the elementary components of bone (hydroxyapatite,
collagen, water) and provide effective elastic properties.
At a scale of 10 nm, long cylindrical collagen molecules,
attached to each other at their ends by ∼1.5 nm long
crosslinks and hosting intermolecular water in between,
form a contiguous matrix called wet collagen. At a
scale of several hundred nanometers, wet collagen and
mineral crystal agglomerations interpenetrate each other,
forming the mineralized fibril. At a scale of 5–10 µm,
the extracellular solid bone matrix is represented as
collagen fibril inclusions embedded in a foam of largely
disordered (extrafibrillar) mineral crystals. At a scale
above the ultrastructure, where lacunae are embedded in
extracellular bone matrix, the extravascular bone material
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is observed (Fritsch and Hellmich, 2007). Human femoral
trabecular bone has an apparent density and an apparent
ash density of 0.43 g/cm3 and 0.26 g/cm3, respectively.
The human vertebral body has an apparent density of
0.14 ± 0.06 g/cm3 (Liebschner et al., 2004). Adult human
bone has a secondary osteonal structure, i.e. osteons
>100 µm containing blood vessels and with cement lines
forming a boundary between adjacent lamellae (Wang
et al., 1998). Bone has the unique capacity to regenerate
without the development of a fibrous scar, which is
symptomatic of soft tissue healing of wounds. This is
achieved through the complex interdependent stages of
the healing process, which mimics the tightly regulated
development of the skeleton (Kanczler and Oreffo, 2008).

2. Bone cells and ossification

Bone tissue consists of specialized cells and the extracel-
lular matrix that these cells secrete and remodel (Huang
et al., 2007). Osteoblasts, which mature into osteocytes,
are responsible for depositing the proteinaceous and
calcified matrix and secreting the growth factors nec-
essary for osteogenesis. Osteoclasts, derived from the
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monocyte–macrophage lineage, participate in the critical
function of bone remodelling. The extracellular matrix is
composed of collagenous proteins (predominantly colla-
gen type I), non-collagenous proteins (osteocalcin, matrix
gla protein, osteopontin and bone sialoprotein) and min-
eralized matrix (hydroxyapatite) (Kwan et al., 2008). The
cell responsible for bone formation, the osteoblast, is
derived from a marrow stromal fibroblastic stem cell.
These marrow stromal fibroblastic stem cells exist post-
natally, are multipotent and have the ability to generate
myelosupportive stroma, osteoblasts, adipocytes, chon-
drocytes, smooth muscle cells and astrocytes. This popu-
lation of cells are also referred to as osteogenic stem cells,
marrow stromal fibroblastic cells, bone marrow stromal
stem cells, mesenchymal stem cells, stromal precursor
cells and skeletal stem cells (Caplan, 1991; Bianco and
Robey, 2001; Barry and Murphy, 2004).

Development and formation of the skeleton (ossifica-
tion) occurs by two distinct processes: intramembraneous
and endochondral ossification. Both intramembraneous
and endochondral bone ossification occur in close proxim-
ity to vascular ingrowth. Intramembraneous ossification
is characterized by invasion of capillaries into the mes-
enchymal zone and the emergence and differentiation
of mesenchymal cells into mature osteoblasts. These
osteoblasts constitutively deposit bone matrix, leading to
the formation of bone spicules. These spicules grow and
develop, eventually fusing with other spicules to form
trabeculae. As the trabeculae increase in size and num-
ber they become interconnected, forming woven bone (a
disorganized weak structure with a high proportion of
osteocytes), which eventually is replaced by more orga-
nized, stronger lamellar bone. This type of ossification
occurs during embryonic development and is involved
in the development of flat bones in the cranium, vari-
ous facial bones, parts of the mandible and clavicle and
the addition of new bone to the shafts of most other
bones. In contrast, bones of load-bearing joints form by
endochondral formation (Marks and Hermey, 1996).

3. Regenerative medicine and stem
cells

Regenerative medicine offers novel therapeutic
approaches, not only to control the progression of dis-
eases but also, for the first time, to promote repair through
tissue regeneration, a complex process of events encom-
passing stem cell differentiation and tissue patterning with
architectonic organization and functional restoration.

Cell-based bone tissue engineering is a rapidly evolving
therapy option in bone reconstruction strategies. The
discovery of stem and progenitor cells opened a new
frontier in regenerative medicine, which aims to replace
cells and tissues in a broad range of conditions associated
with damaged cartilage, bone, muscle, tendon and
ligament.

Stem cells are undifferentiated cells with the capability
to regenerate tissues (Blau et al., 2001). Adult stem cells

are sparsely distributed in the body and perform functions
such as, first, to produce identical copies of themselves for
long periods of time, which is also referred to in the stem
cell literature as the capacity for long-term self-renewal,
and second, to engender transitional cell types before
they reach the end of the differentiation cascade. The
intermediate cell is defined as a progenitor or precursor
cell, a cell that is regarded as committed to differentiate
along a particular cellular pathway (Bruder and Fox et al.,
1999; Caplan and Bruder, 2001).

Among the different stem cells types, one can find
different populations proposed for regenerative medicine
applications. Research on skeletal tissue engineering has
remained focused on identifying an ideal cellular source.
When considering potential cells for bone and cartilage
regenerative medicine, options include osteoblasts, bone
marrow mesenchymal stem cells, adipose-derived stem
cells, embryonic stem cells, genetically modified cells,
mesenchymal cambial layer cells, skeletal muscle-derived
stem cells, muscle satellite cells, muscle-derived stem
cells, umbilical cord stem/progenitor cells, cells from
cord blood, amniotic fluid stem cells, veins and Wharton
jelly cells. The present review presents an overview of
these different sources for bone and cartilage tissue
regeneration.

4. Cell sources for bone regeneration

Cell sources for bone tissue engineering applications
can be categorized with respect to their state of
differentiation. With this idea, four different cell-based
tissue engineering approaches have been described
for the regeneration of bone. These strategies are
based on the implantation of: (a) unfractionated fresh
bone marrow; (b) purified, culture-expanded stem cells;
(c) differentiated osteoblasts; or (d) cells that have been
modified genetically to express rhBMP (Bruder and Fox
et al., 1999). In general, the less differentiated cells
will be more easily expanded in vitro due to their high
proliferation rate, while the differentiated cells will be
more effective in vivo due to their higher and rapid
production of mineralized extracellular matrix. For each
type of cells use, advantages and disadvantages can be
found.

4.1. Osteoblasts

Despite their lineage commitment to bone formation,
osteoblasts derived from autologous bone represent a
relatively limited source. In the early phase, the non-
stem-cell approach was usually used to prove the concept
of bone regeneration. For example, Vacanti et al. reported
that bone tissue could be generated in the subcutaneous
tissue of nude mice after implantation of degradable
polymer seeded with osteoblasts isolated from periosteum
(Vacanti et al., 1993; Vacanti and Upton, 1994). Studies
of animal model and human osteoblasts have described
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an attenuation of osteogenic differentiation and the
proliferative response to mitogenic stimuli with aging
(Zuk et al., 2001; Simonsen et al., 2002).

4.2. Mesenchymal stem cells

Friedenstein et al. (1968) found there were osteogenic
precursor cells located in the bone marrow in a
population of fibroblastic cells that could form a cell
colony, named fibroblastic colony-forming units (CFU-
Fs). The mammalian bone marrow (BM) is composed
of different types of stem cells, among which are
cells termed mesenchymal stromal cells or mesenchymal
stem cells (MSCs) (Prockop, 1997; Blau et al., 2001).
Mesenchymal cells are originally defined as primordial
cells of mesodermal origin, giving rise to cells such as
adipocytes (Young et al., 1998; Pittenger et al., 1999;
Endres et al., 2003), osteoblasts (Pittenger et al., 1999;
Donald et al., 1996; Jaiswal et al., 1997; Kadiyala et al.,
1997; Nilsson et al., 1999) chondrocytes (Kadiyala et al.,
1997; Pittenger et al., 1999; Johnstone et al., 1998;
Mackay et al., 1998), tenocytes (Awad et al., 1999),
skeletal myocytes (Pereira et al., 1995; Horwitz et al.,
1999; Jiang et al., 2002; Bhabavati et al., 2004; Smith
et al., 2004; Beyer and da Silva, 2006; Sethe et al.,
2006). MSCs can also differentiate into cells of ectodermal
origin, such as neurons (Woodbury et al., 2000), and of
endodermal origin, such as hepatocytes (Petersen et al.,
1999).

Adult MSCs have also been isolated from muscles
(Deasy et al., 2001), peripheral blood (Kuznetsov et al.,
2001; Roufosse et al., 2004), fat (Lee RH et al., 2004),
hair follicles and scalp subcutaneous tissue (Shih et al.,
2005), periodontal ligament (Trubiani et al., 2005), fetal
bone marrow, blood, lung, liver and spleen (In’t Anker
et al., 2003), as well as pre-natal tissues such as cord blood
(Erices et al., 2000) and placenta (Fukuchi et al., 2004;
In’t Anker et al., 2004). As a result, significant efforts
have been directed at identifying postnatal sources for
multipotent cells. Multipotent cells have been identified
in bone marrow, adipose tissue, placenta, umbilical cord,
human amniotic fluid, dental pulp and skeletal muscle
among others (Freeman, 1997; Clarkson, 2001; Mitka,
2001; Kadner et al., 2002; Kaviani et al., 2002, 2003;
Rosser and Dunnett, 2003; Savitz et al., 2004).

Currently, MSCs are isolated through a methodology
based on gradient centrifugation and adherence to plastic
culture surfaces, as described by Haynesworth and co-
workers in the early 1990s (Haynesworth et al., 1992).
Compared to unfractionated bone marrow, mesenchymal
stem cells generate greater bone formation in preclinical
studies (Kahn et al., 1995; Inoue et al., 1997). However,
gradual loss of both their proliferative and differentiation
potential has been observed during in vitro expansion
(Mauney et al., 2005).

The cells from unfractionated fresh bone marrow are
relatively easy to collect but it will not be possible to
use these cells in allotransplantation, as bone marrow

contains T lymphocytes that encounter and respond to
host antigens in virtually all tissues in the body, leading
to multi-system graft-versus-host syndrome (Weissman
et al., 2000). Mesenchymal stem cells isolated from bone
marrow aspirate, adult peripheral blood, neonatal cord
blood or liver, for example, could present advantages
from an immunological point of view (Javazon et al.,
2004). However, as one of every 100 000 nucleated cells
derived from bone marrow is a stem cell, a procedure of
isolation is required in order to decrease the volume of
material injected (Connolly et al., 1989).

MSCs express a complex pattern of molecules, including
CD105 (SH2), CD73 (SH3 and SH4), CD106 (VCAM-
1), CD54 (ICAM-1), CD44, CD90, CD29, STRO-1, as
well as immune molecules such as HLA class I and
II [the latter only upon the effect of interferon-γ
(IFN-γ )] and CD119 (IFN-γ receptor). Haematopoietic
markers, such as CD45 and CD34, are normally not
expressed (Krampera et al., 2005, 2006a). MSCs also
express cytokines, growth factors, extracellular matrix
and adhesion-related receptors (Ringe et al., 2002).

Among all adult stem cells, bone marrow stem cells
remain the most commonly used cell source for bone
regeneration and repair in the studies using different
animal models. On the basis of in vitro observation that
MSCs can differentiate into osteocytes and chondrocytes,
many attempts have been made to use expanded MSCs
for in vivo tissue repair (Barry, 2001; Long, 2001; Fibbe,
2002). Osteogenic induction is conducted by culturing
human BMSCs in an induction medium containing the
synthetic glucocorticoid dexamethasone, L-ascorbic acid,
1,25-dihydroxyvitamin D3 and the organic phosphate β-
glycerophosphate playing a role in the mineralization and
modulation of osteoblast activities (Bellows et al., 1990;
Chung et al., 1992; Tenenbaum et al., 1992; Liu et al.,
1999). After 16 days of culture, induced cells exhibited an
osteogenic phenotype by alkaline phosphatase expression,
reactivity with anti-osteogenic cell surface monoclonal
antibodies, modulation of osteocalcin mRNA production
and the formation of a mineralized extracellular matrix
containing hydroxyapatite. The differentiation of MSCs
into the osteogenic lineage is also stimulated by the
addition of vitamin D3 (Rickard et al., 1994; Jorgensen
et al., 2004). A similar inducing effect can also be
achieved by using growth factors such as the bone
morphogenetic protein (BMP) family (Hanada et al.,
1997; Yeh et al., 2002; Gregory et al., 2005), and
if the cells are cultured on collagen (Yang et al.,
2004; Salasznyk et al., 2004a; Salasznyk et al., 2004b)
and calcium phosphates (Murphy et al., 2005; Salgado
et al., 2005). Mesenchymal progenitors derived from
juvenile bone marrow have the potential to undergo
multiple differentiation pathways. Although it has been
suggested that osteoblasts and adipocytes share common
precursors within the adult stromal system (Bennett et al.,
1991), human bone marrow-derived precursors showed
no obvious differentiation into adipocytic cells, when
stimulated with osteogenic medium supplemented with
dexamethasone (Dex) in monolayers. In other studies,
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depending on the presence of Dex in primary or secondary
cultures of marrow stromal cells, an inverse relationship
between the differentiation of adipocytic and osteogenic
cells in marrow stromal cells has been reported (Beresford
et al., 1992).

Bone marrow-derived MSCs have been seeded on
extracellular matrices such as hydroxyapatite and then
implanted in vivo into NOD/SCID mice, subsequently
observing bone formation (Krebsbach et al., 1997). In
combination with scaffolds/matrices, it was possible for
seeded MSCs to repair segmental defects of critical size in
various animal models (Bruder et al., 1998; Kon et al.,
2000; Petite et al., 2000; Arinzeh et al., 2003; Holy
et al., 2003). Similarly, bone marrow cells infused in
children with osteogenesis imperfecta also increased,
3 months later, the mean number of osteoblasts, the
formation of new lamellar bone and the total body
mineral content. In addition, they eventually lowered
the frequency of fractures and enhanced the body growth
rate (Beyer and da Silva, 2006). Other studies in animals
showed that the best route of MSC administration to
induce local repair or regeneration of bone, cartilage
or tendon is the in situ injection or implant (Richards
et al., 1999). Particularly promising for orthopaedic
applications, especially for bone formation, is the use
of natural or synthetic biomaterials as carriers for MSCs
delivery (Cancedda et al., 2003). A number of clinical
studies have shown the efficacy of this approach in
humans. Porous ceramic scaffolds loaded with in vitro
expanded autologous bone marrow-derived MSCs were
successfully implanted in three patients with large bone
defects (Quarto et al., 2001). MSCs can also potentially
be used to engineer cartilage–bone composites for the
repair of defects extending from the articular surface into
the underlying bone (Martin et al., 1998).

Stem cells have recently evoked interest as a
promising alternative cell source for treating articular
cartilage defects, helped by the development of MSC-
based strategies of tissue engineering to induce in situ
differentiation of mesenchymal progenitors into cartilage
(Schultz et al., 2000; Jorgensen et al., 2001).

Autologous chondrocytes have a limited capacity to
proliferate, on the other hand, MSCs are quickly amplified
in monolayers. The easy availability of MSCs from
various tissues, such as bone marrow, adipose tissue,
synovial membrane and other tissues, together with their
high proliferation capacity, make them attractive as a
distinguished cell substitute for chondrocytes in cartilage
regeneration (Friedenstein et al., 1970; Castro-Malaspina
et al., 1980; De Bari et al., 2001; Noth et al., 2002; Baksh
et al., 2004).

MSCs have been used in vivo to repair full-thickness
joint cartilage defects in animal models, using various car-
rier matrices (Wakitani et al., 1994; Caplan et al., 1997;
Murphy et al., 2000; Adachi et al., 2002; Wakitani et al.,
2002; Wakitani and Yamamoto, 2002). Indrawattana and
co-workers (2004) described the use of three different
growth factors, TGFβ3, BMP-6 and IGF-1, in combination
with pellet cultures of human bone marrow cells, for cell

induction. Cells exhibited features of chondrocytes in their
morphology and extracellular matrix, in both inducing
patterns of combination and cycling induction. Expres-
sion of gene markers of chondrogenesis, collagen type
II and aggrecan was noticeable. In rabbits, full repair of
full-thickness defects of joint cartilage was observed after
transplantation of autologous MSCs dispersed in a type I
collagen gel, which was then transplanted into a large and
full-thickness defect in the weight-bearing surface of the
medial femoral condyle (Wakitani et al., 1994). Twenty-
four weeks after transplantation, the reparative tissue was
stiffer and less compliant than the tissue derived from
empty defects, but less stiff and more compliant than the
normal cartilage. MSCs have been successfully used for
intervertebral disc regeneration in a rat model, using local
injection of fluorescently labelled MSCs (Crevensten et al.,
2004). After an initial decrease at 7 and 14 days after
injection, fluorescent MSCs inside the disc returned to the
initial number of injected cells at 28 days, with 100% cell
viability. Autologous bone-marrow-derived MSCs have
been applied to patients with osteoarthritis (Wakitani
et al., 2002).

For in vitro chondrocyte differentiation, the most
commonly used method in this field established over
many years has involved culturing MSCs in chondrogenic
medium as cell aggregates, often referred to as pellet
culture, which was originally developed using rabbit MSCs
and later with human bone marrow-derived stem cells
(Yoo et al., 1998). In 2007, this method was modified
with a different format for the culture, employing a porous
membrane support for the cells that initially creates a
shallow multilayer of stem cells, which then differentiate
and grow into a disc of cartilage-like tissue. This resulted
in a more uniform differentiation of the MSCs and more
efficient production of matrix by the cells (Murdoch et al.,
2007). Attempts to use these cells in the clinical setting
have been restricted to implantation in human knees
in a carrier gel (Wakitani et al., 2002; Kuroda et al.,
2007). Human mesenchymal stem cells were cultured
in vitro in a poly(DL-lactic-co-glycolic acid)–collagen
biodegradable polymer scaffold in serum-free DMEM
containing TGFβ3 (Chen et al., 2004). After 4 weeks,
the matrices were positively stained by safranin O and
toluidine blue, as well collagen type ll and proteoglycan
were detected around the cells. Three-dimensional PLGA
scaffolds seeded with cultured rabbit MSCs were also
transplanted into large defects in rabbit knees and
analysed histologically after the operation. A hyaline-
like cartilage structure was shown at 12 weeks after
the transplantation (Uematsu et al., 2005). MSCs and
chondrocytes embedded in a polylactid acid matrix placed
into a full-thickness cartilage defect in rabbits showed a
hyaline cartilage-like histology (Yan and Yu, 2007). The
histology scores in these groups were significantly higher
than in groups where the defect was filled with fibroblasts
or without cells. Studies demonstrated that mechanical
stress strongly improves cartilage regeneration through
the maintenance of hyaline cartilage, and that cyclic
mechanical compression enhances the expression of
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chondrogenic markers in mesenchymal progenitor cells
differentiated in vitro, resulting in increased cartilaginous
matrix formation (Guilak et al., 2004; Schumann et al.,
2006; Mauck et al., 2007).

4.3. Adipose-derived stem cells

Isolated adipose stem cells (ASCs) acquire a fibroblast-like
morphology, similar to that observed for MSCs, and have
been shown to have potential for osteogenic, adipogenic,
chondrogenic and other lineage differentiation (Huang
et al., 2000; Zuk et al., 2002; Gimble, 2003; Gimble
and Guilak, 2003a; Awad et al., 2004; Dragoo et al.,
2004; Hicok et al., 2004; Rodriguez et al., 2005; Betre
et al., 2006). Osteogenic differentiation can be assessed
by the identification of osteoblast phenotype markers,
such as ALP activity, extracellular matrix production by
the presence of bone matrix proteins such as osteopontin,
osteonectin, bone sialoprotein-2, osteocalcin and collagen
type I, among others, and by the calcification and
formation of bone nodules (Gimble and Guilak, 2003b).

Chondrogenic differentiation can be verified by the
presence of chondrocyte phenotypic markers, such as
aggrecan, collagen type lI, Sox-9, collagen type 6, collagen
type 10 and collagen type 9. A study has shown that
ASCs have the same ability as bone marrow MSCs to
regenerate bone and repair bone defects in vivo (Cowan
et al., 2004). Significant osteogenic formation and defect
bridging was evident after 2–12 weeks, respectively,
following a critical-sized mouse calvarial bone defect.
Clonal populations within ASCs are multipotent and
possess the potential for differentiation along adipose,
chondrogenic and osteogenic lineages. The ability of
mouse ASCs to regenerate bone in a critical-sized calvarial
defect model was demonstrated. ASCs were seeded on
to apatite-coated poly(DL-lactic-co-glycolic acid) (PLGA)
scaffolds and implanted into 4 mm parietal bone defects
of adult mice (Kwan et al., 2008). Radiographical analysis
of calvarial healing revealed that mice treated with ASCs
had greater bone regeneration than mice treated with
osteoblasts at the 4 week time point.

The potential of these cells to be used for bone tissue
engineering was shown by Hicok et al. (2004), who
demonstrated the ability of ASCs to form bone in vivo.
When seeded on hydroxyapatite/tricalcium phosphate
subcutaneously implanted into SCID mice for 6 weeks,
ASCs were shown to be capable of causing the formation
of human osteoids in 80% of the implant. Hennig et al.
(2007) demonstrated that adipose tissue-derived MSCs
reveal an altered bone morphogenic protein (BMP)
profile compared to MSCs from bone marrow and
required exogenous application of BMP, in addition
to TGFβ, to compensate for the reduced endogenous
expression of BMP2, −4 and −6. Application of BMP6
in combination with TGFβ completely eliminated the
reduced chondrogenic differentiation potential of MSCs
derived from adipose tissue. This demonstrated that MSCs
isolated from different tissues do not represent identical

cell populations, but vary in the expression profile of some
growth factors relevant for chondrogenesis.

4.4. Embryonic stem cells

Embryonic stem cells (ESCs) are harvested from the
inner cell mass of the blastocyst and are acclaimed for
their unlimited capacity for self-renewal (Allison et al.,
2002; Preston et al., 2003). They were primarily isolated
during early 1980s from mouse embryos (Evans and
Kaufman, 1981; Martin, 1981), then later from human
embryos (Thomson et al., 1998; Reubinoff et al., 2000).
Human ESCs are pluripotent, as they can give rise to
essentially all cell types in the body (Buckwalter et al.,
1997; Hentthorn, 2002). In vitro and in vivo experiments
have demonstrated the ability of ESCs for osteogenic
differentiation (Whang and Lieberman, 2003). In spite
of this broad differentiation capability and potential to
be used in regenerative medicine, the predisposition
of these cells for teratoma formation and the political
and ethical debate currently surrounding their use pose
substantial challenges for forward progress on these cells
(Lauffenburger and Schaffer, 1999; Montjovent et al.,
2004).

4.5. Multipotent periosteum cells

The periosteum is a bilayered tissue membrane that
is attached to bone cortex (Taylor, 1992). A number
of studies (Nakahara et al., 1990; Nakata et al., 1992;
Fang and Hall, 1996; O’Driscoll et al., 2001) have also
shown that the periosteum cambium layer also possesses
chondroprogenitor cells that can also promote new
cartilage. Perka et al. (2000) reported that multipotent
cells isolated from the periosteum were seeded on
PLGA scaffolds and placed in critical-sized defects in
the metadiaphyseal ulnas of New Zealand white rabbits.
After 28 days, the constructs had bone formation and
adequate transplant integration at the margins to the
surrounding bone tissue. Vacanti et al. (2001) reported
the replacements of an avulsed phalanx with lamellar
bone, coral, blood vessels and soft tissue. Shantz et al.
(2002) reported on the in vivo endochondral bone
formation with osteoid production detectable through
Von Kossa and osteocalcin staininq after 6 and 17 weeks.
Schmelzeisen et al. (2003) showed that MPCs give rise to
viable osteocytes in trabecular bone.

MPCs have also been used in cartilage tissue
engineering. Stevens et al. (2004a) used a rapid-
curing alginate gel system to support periosteum-derived
chondrogenesis. After 6 weeks of culture, significant
quantities (>50%) of the total area of the periosteal
explants were composed of cartilage that was hyaline-
like in appearance and contained cartilage-specific
proteoglycans and type-ll collagen. In another study,
the combined use of two growth factors, FGF-2 and
TGFβ1, with periosteal explants cultured in vitro within
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alginate or agarose-based gels, significantly enhanced
cell proliferation, resulting in increased neocartilage
formation at later stages (Stevens et al., 2004b).

4.6. Skeletal muscle-derived stem cells

Two muscle stem cell populations with a possible
mesenchymal character have been described: satellite
cells (SCs) and muscle-derived stem cells (MDSCs).

Muscle satellite cells are found adjacent to skeletal
muscle myofibres and lie underneath the basal lamina.
When initiating division, satellite cells express either
myf-5 or Myo-D (O’Brien et al., 2002). Furthermore, this
cell population has also shown to express a number of
other proteins, including desmin, c-met, M-cadherin, PaxT
and Bcl-2. Satellite cells have for long been considered
as precursor rather than stem cells. Studies reported
that from SCs and upon stimulation with BMPs, it was
possible for these cells to differentiate into osteogenic
lineage expressing both alkaline phosphatase (ALP) and
osteocalcin (Asakura et al., 2001; Wada et al., 2002).

Muscle-derived stem cells (MDSCs) are believed to
be located either in the connective tissue regions of
the skeletal muscle or in the capillaries surrounding the
myofibres (Lee et al., 2000; Qu-Petersen et al., 2002; Peng
and Huard, 2004). In culture, MDSCs express desmin
and Myo D and stem cell markers such as CD34, sca-1
and Bcl-2 (Torrente et al., 2001; Cao and Huard, 2004).
McKirmey-Freeman et al. (2002) and Adachi et al. (2002)
showed that CD45-MDSCs have both chondrogenic and
osteogenic potential. Other studies described positive
results regarding the regeneration of critical-sized bone
defects (Qu et al., 1998; Peng et al., 2001; Lee JY et al.,
2002; Wright et al., 2002).

4.7. Prenatal stem cells

Several sources for adult stem cells with putative
mesenchymal character have been described from
prenatal tissues and fluid, and these include cord blood,
amniotic fluid, umbilical vein and Wharton’s jelly (Erices
et al., 2000; Rosada et al., 2003; Gang et al., 2004; Kogler
et al., 2004; Lee OK et al., 2004; Tondreau et al., 2005).

In cord blood, Erices et al. (2000) reported the pres-
ence of a population of mesenchymal progenitors that
expressed several MSC-related antigens, such as SH2,
SH3, SH4, ASMA, MAB 1470, CD13, CD29 and CD49e.
These cells could be directed toward the osteogenic lin-
eage, showing bone nodule formation and ALP activity.
Lee et al. (2004) clonally expanded adult stem cells
derived from umbilical cord blood with a mesenchy-
mal character, which were able to differentiate into
several lineages, including osteogenic and chondrogenic
lineages. Rosada et al. (2003) subcutaneously implanted
immunocompromised mouse cord blood MSCs that had
previously been mixed with hydroxyapatite/tricalcium
phosphate powder. After 8 weeks, It was possible to

observe the presence of bone at the interface of the
HA/TCP powder and the surrounding tissues. Kogler
et al. (2004) implanted in mice, either subcutaneously
or in femoral defects, a three-dimensional (3D) scaf-
fold seeded with cord blood MSCs. After 3 weeks, a
cartilage tissue-like formation was observed in the sub-
cutaneous model and after 12 weeks bony reconstitution
was observed.

Amniotic fluid is known to contain multiple cell types
derived from the developing fetus (Priest et al., 1978;
Polgar et al., 1989). De Coppi et al. (2007) showed that
cKit-expressing cells within this heterogeneous popula-
tion can give rise to differentiated cells of bone lineage.
Human amniotic fluid stem cells (AFSCs) of the same
clone can be induced to express markers characteristic of
osteocytes, such as Runx2, osteocalcin and alkaline phos-
phatase. Calcium deposition was shown in human AFS
cells maintained in osteogenic differentiation medium
in vitro by measuring calcium–cresolophthalein complex
levels. Von Kossa staining of AFS cells in alginate/collagen
scaffold recovered 8 weeks after implantation indicated
strong mineralization. The formation of tissue-engineered
bone from printed constructs of osteogenically differen-
tiated human AFS cells in immune-deficient mice was
measured using micro-CT scan of mouse 18 weeks after
implantation of printed constructs. At sites of implan-
tation of the scaffolds containing AFS cells, blocks of
bone-like material were observed with a density some-
what greater than that of mouse femoral bone. Control
scaffolds lacking AFSCs did not promote the formation of
bony tissue.

The umbilical cord vein was shown by Romanov et al.
(2003) to possess mesenchymal progenitors that showed
alkaline phosphatase activity. According to Kim et al.
(2004), it was possible to obtain these MSC-like cells
from only 6% of the cords. Fibroblastic cells were negative
for endothelial markers such as Von Willenbranf factor
(vWF) and PECAM-1. As in other cases, when exposed
to osteogenic conditions these cells revealed typical signs
of osteogenic differentiation through the deposition of a
mineralized extracellular matrix and cells expression of
Runx2 and osteopontin.

In Wharton’s jelly, the primitive connective tissue of the
umbilical cord, Sarugaser et al. (2004) described a cell
population designated human umbilical cord perivascular
cells (HUCPVCs). Upon culture, these cells displayed a
fibroblast-like morphology, expressing at the same time
α-actin, desmin, vimentin, 3G5 and typical MSC markers
such as SH2, SH3 and CDl44, and a colony-forming unit
fibroblast frequency (CFU-F) of 1 : 333. These HUCPVCs
had a subpopulation that exhibited osteogenic phenotype
and elaborated bone nodules. Wang et al. (2004) showed
that, upon stimulation of cells positive for SH2 and SH3
with osteogenic supplements, it was possible to observe a
cell population with high indices of ALP activity as well as
the expression of osteopontin. This cell population were
also shown to possess chondrogenic potential, expressing
collagen ll.
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4.8. Genetically modified cells

The transfection of the cells can be done either in two
steps with an in vitro transfection followed by injection
of the modified cells (a procedure called ‘ex vivo gene
therapy’) or in one step by transfecting the cells directly
in the body (a procedure called ‘in vivo gene therapy’).
Cells genetically modified to express bone formation
cytokines could be used to take advantage of genetic
therapy (Lauffenburger and Schaffer, 1999). BMPs have
promising potential for clinical bone and cartilage repair,
working as bone-inducing components in diverse tissue-
engineering products. Current clinical uses include spinal
fusion, healing of long bone defects and craniofacial
and periodontal applications, among others (Bessa et al.,
2008). Combining gene therapy and tissue-engineering
methodologies to enhance tissue regeneration, cells
overexpressing BMP have been developed and used in
animal studies (Gazit et al., 1999). Gene transfection of
osteogenesis-related transcription factors such as Osterix
(Tu et al., 2006) and Runx2 (Byers et al., 2004) has been
shown to induce an osteogenic phenotype of BMSCs.

4.9. Human skin fibroblasts

The Yamanaka and Thompson groups demonstrated
that the ectopic expression of a select group of
genes can enable postnatal, human fibroblasts and
other somatic cells to exhibit many of the hallmarks
of human embryonic stem cells (Park et al., 2003;
Hohlfeld et al., 2005, Takahashi et al., 2007). These
findings are especially important, as they demonstrate
the potential for reprogramming postnatal somatic cells
to a pluripotent state (Wernig et al., 2007). These studies
provide a promising direction for generating patient-
, tissue- and disease-specific stem cells, presumably
without immunological rejection concerns. Given the
abundance and ease with which skin fibroblasts can be
harvested autogenously, such an approach may provide
patients with specific cell types needed for tissue/organ
regeneration, including bone and cartilage.

5. Future directions

The presented stem cell populations have shown
promising results, key characteristics and differentiation
potential to be used for bone and cartilage tissue
regeneration. The amazement starts when reviewers
(Krampera et al., 2006b; Pioletti et al., 2006; Salgado
et al., 2006; Mano and Reis, 2007) start to gaze at the
number of these populations, how their diversity might
have arisen and when one considers the evolutionary
processes behind this difference. This inextricably drove
researchers to closely examine processes responsible for
cell differentiation into bone and cartilage, scrutinizing
matrix sources nature has readily provided for millions of
years (Cruz et al., 2008; Gomes et al., 2008; Oliveira et al.,

2008). Most experiments with bone and cartilage tissue
engineering have been carried out with small animals or
small-sized defects. However, human defects are normally
larger and more complicated, thus requiring larger repair
tissues and structural and mechanical properties similar
to human normal tissues. In the coming years, further
clinical trials involving stem and progenitor cells have
the potential to deepen our knowledge of stem cell
biology and dramatically improve their application for
tissue regeneration. It specifically remains necessary
to investigate further the different signalling pathways
involved in the proliferation and differentiation of stem
cells and the further identification of related markers
for these cells, so that functional stem cells can be
obtained. It is our belief that the isolation and use of SCs
with proper electrical, physical and chemical maturity
for tissue engineering is an essential factor. If donor
SCs are engrafted in order to support the strength and
tensile capacity of compromised bone or skin, functional
electrical cell coupling should first be satisfied. In contrast
to host osteoblasts, stem cell-differentiated osteoblasts
might be lacking a proper functional coupling, thereby
creating a heterogeneous focus upon implantation.
To optimally support a compromised tissue upon
engraftment, donor cells should preferably be similar
to, and integrate mechanically and electrically with, the
host tissue (van Veen et al., 2006). If not, implantation
of cells will not only chronically fail to increase the
strength/tensile capacity of that tissue but, even more
deleterious, disturb the repartition of forces applied to
regenerated tissue. The ex vivo formation of complex
3D hybrid tissues (i.e. joint cartilage with subchondral
bone and integrated vascular access for implantation)
may also revolutionize the treatment of damaged skeletal
tissue. Further developments in these areas of stem cell
research will have a significant impact on functional bone
and cartilage regeneration and open a novel avenue for
regenerative medicine.
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