405 research outputs found

    At-risk serum cholesterol profile at both ends of the nutrition spectrum in West African adults? The Benin study

    Get PDF
    Low HDL-cholesterol (HDL-C), using as cut-offs 1.03 mmol/L in men and 1.29 mmol/L in women, was observed in more than 25% apparently healthy adults (n = 541) in a cross-sectional study on nutrition transition and cardiometabolic risk factors (CMRF) in Benin, West Africa. Both overweight/obesity (35.3%) and underweight (11.3%) were present, displaying the double burden of malnutrition. We examined in more depth the association of low HDL-C with nutrition and with other CMRF. Metabolic syndrome components were assessed, plus the ratio of total cholesterol (TC)/HDL-C and serum homocysteine. Insulin resistance was based on Homeostasis Model Assessment. We also measured BMI and body composition by bio-impedance. Dietary quality was appraised with two non-consecutive 24 h recalls. Low HDL-C was associated with much higher TC/HDL-C and more abdominal obesity in men and women and with more insulin resistance in women. The rate of low HDL-C was highest (41.9%) among the overweight/obese subjects (BMI ≥ 25), but it also reached 31.1% among the underweight (BMI < 18.5), compared with 17.3% among normal-weight subjects (p < 0.001). Lower dietary micronutrient adequacy, in particular, in vitamins A, B3, B12, zinc and calcium, was associated with low HDL-C when controlling for several confounders. This suggests that at-risk lipoprotein cholesterol may be associated with either underweight or overweight/obesity and with poor micronutrient intake

    In Vivo Monitoring of Adult Neurogenesis in Health and Disease

    Get PDF
    Adult neurogenesis, i.e., the generation of new neurons in the adult brain, presents an enormous potential for regenerative therapies of the central nervous system. While 5-bromo-2′-deoxyuridine labeling and subsequent histology or immunohistochemistry for cell-type-specific markers is still the gold standard in studies of neurogenesis, novel techniques, and tools for in vivo imaging of neurogenesis have been recently developed and successfully applied. Here, we review the latest progress on these developments, in particular in the area of magnetic resonance imaging (MRI) and optical imaging. In vivo in situ labeling of neural progenitor cells (NPCs) with micron-sized iron oxide particles enables longitudinal visualization of endogenous progenitor cell migration by MRI. The possibility of genetic labeling for cellular MRI was demonstrated by using the iron storage protein ferritin as the MR reporter-gene. However, reliable and consistent results using ferritin imaging for monitoring endogenous progenitor cell migration have not yet been reported. In contrast, genetic labeling of NPCs with a fluorescent or bioluminescent reporter has led to the development of some powerful tools for in vivo imaging of neurogenesis. Here, two strategies, i.e., viral labeling of stem/progenitor cells and transgenic approaches, have been used. In addition, the use of specific promoters for neuronal progenitor cells such as doublecortin increases the neurogenesis-specificity of the labeling. Naturally, the ultimate challenge will be to develop neurogenesis imaging methods applicable in humans. Therefore, we certainly need to consider other modalities such as positron emission tomography and proton magnetic resonance spectroscopy (1H-MRS), which have already been implemented for both animals and humans. Further improvements of sensitivity and neurogenesis-specificity are nevertheless required for all imaging techniques currently available

    Mesenchymal Stem Cells Promote Oligodendroglial Differentiation in Hippocampal Slice Cultures

    Get PDF
    We have previously shown that soluble factors derived from mesenchymal stem cells (MSCs) induce oligodendrogenic fate and differentiation in adult rat neural progenitors (NPCs) in vitro. Here, we investigated if this pro-oligodendrogenic effect is maintained after cells have been transplanted onto rat hippocampal slice cultures, a CNS-organotypic environment. We first tested whether NPCs, that were pre-differentiated in vitro by MSC-derived conditioned medium, would generate oligodendrocytes after transplantation. This approach resulted in the loss of grafted NPCs, suggesting that oligodendroglial pre-differentiated cells could not integrate in the tissue and therefore did not survive grafting. However, when NPCs together with MSCs were transplanted in situ into hippocampal slice cultures, the grafted NPCs survived and the majority of them differentiated into oligodendrocytes. In contrast to the prevalent oligodendroglial differentiation in case of the NPC/MSC co-transplantation, naive NPCs transplanted in the absence of MSCs differentiated predominantly into astrocytes. In summary, the pro-oligodendrogenic activity of MSCs was maintained only after co-transplantation into hippocampal slice cultures. Therefore, in the otherwise astrogenic milieu, MSCs established an oligodendrogenic niche for transplanted NPCs, and thus, co-transplantation of MSCs with NPCs might provide an attractive approach to re-myelinate the various regions of the diseased CNS. Copyright (C) 2009 S. Karger AG, Base

    MixUp-MIL: Novel Data Augmentation for Multiple Instance Learning and a Study on Thyroid Cancer Diagnosis

    Full text link
    Multiple instance learning exhibits a powerful approach for whole slide image-based diagnosis in the absence of pixel- or patch-level annotations. In spite of the huge size of hole slide images, the number of individual slides is often rather small, leading to a small number of labeled samples. To improve training, we propose and investigate different data augmentation strategies for multiple instance learning based on the idea of linear interpolations of feature vectors (known as MixUp). Based on state-of-the-art multiple instance learning architectures and two thyroid cancer data sets, an exhaustive study is conducted considering a range of common data augmentation strategies. Whereas a strategy based on to the original MixUp approach showed decreases in accuracy, the use of a novel intra-slide interpolation method led to consistent increases in accuracy.Comment: MICCAI'23, https://gitlab.com/mgadermayr/mixupmi

    Doublecortin expression in CD8+ T-cells and microglia at sites of amyloid-β plaques:A potential role in shaping plaque pathology?

    Get PDF
    Abstract INTRODUCTION: One characteristic of Alzheimer's disease is the formation of amyloid-β plaques, which are typically linked to neuroinflammation and surrounded by inflammatory cells such as microglia and infiltrating immune cells. METHODS: Here, we describe nonneurogenic doublecortin (DCX) positive cells, DCX being generally used as a marker for young immature neurons, at sites of amyloid-β plaques in various transgenic amyloid mouse models and in human brains with plaque pathology. RESULTS: The plaque-associated DCX+ cells were not of neurogenic identity, instead most of them showed coexpression with markers for microglia (ionized calcium-binding adapter molecule 1) and for phagocytosis (CD68 and TREM2). Another subpopulation of plaque-associated DCX+ cells was negative for ionized calcium-binding adapter molecule 1 but was highly positive for the pan-leukocyte marker CD45. These hematopoietic cells were identified as CD3-and CD8-positive and CD4-negative T-cells. DISCUSSION: Peculiarly, the DCX+/ionized calcium-binding adapter molecule 1+ microglia and DCX+/CD8+ T-cells were closely attached, suggesting that these two cell types are tightly interacting and that this interaction might shape plaque pathology

    Pericytes Favor Oligodendrocyte Fate Choice in Adult Neural Stem Cells

    Get PDF
    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Upon demyelination, oligodendrocyte progenitor cells (OPCs) are activated and they proliferate, migrate and differentiate into myelin-producing oligodendrocytes. Besides OPCs, neural stem cells (NSCs) may respond to demyelination and generate oligodendrocytes. We have recently shown that CNS-resident pericytes (PCs) respond to demyelination, proliferate and secrete Laminin alpha2 (Lama2) that, in turn, enhances OPC differentiation. Here, we aimed to evaluate whether PCs influence the fate choice of NSCs in vitro, towards the production of new myelin-producing cells. Indeed, upon exposure to conditioned medium derived from PCs (PC-CM), the majority of NSCs gave rise to GalC- and myelin basic protein (MBP)-expressing oligodendrocytes at the expense of the generation of GFAP-positive astrocytes. Consistent with these findings, PC-CM induces an increase in the expression of the oligodendrocyte fate determinant Olig2, while the expression level of the astrocyte determinant ID2 is decreased. Finally, pre-incubation of PC-CM with an anti-Lama2 antibody prevented the generation of oligodendrocytes. Our findings indicate that PCs-derived Lama2 instructs NSCs to an oligodendrocyte fate choice favoring the generation of myelin-producing cells at the expense of astrocytes in vitro. Further studies aiming to reveal the role of PCs during remyelination may pave the way for the development of new therapies for the treatment of MS

    Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring

    Get PDF
    Glutamate receptors for N-methyl-d-aspartate (NMDA) are involved in early brain development. The kynurenine pathway of tryptophan metabolism includes the NMDA receptor agonist quinolinic acid and the antagonist kynurenic acid. We now report that prenatal inhibition of the pathway in rats with 3,4-dimethoxy-N-[4-(3-nitrophenyl)thiazol-2-yl]benzenesulphonamide (Ro61-8048) produces marked changes in hippocampal neuron morphology, spine density and the immunocytochemical localisation of developmental proteins in the offspring at postnatal day 60. Golgi–Cox silver staining revealed decreased overall numbers and lengths of CA1 basal dendrites and secondary basal dendrites, together with fewer basal dendritic spines and less overall dendritic complexity in the basal arbour. Fewer dendrites and less complexity were also noted in the dentate gyrus granule cells. More neurons containing the nuclear marker NeuN and the developmental protein sonic hedgehog were detected in the CA1 region and dentate gyrus. Staining for doublecortin revealed fewer newly generated granule cells bearing extended dendritic processes. The number of neuron terminals staining for vesicular glutamate transporter (VGLUT)-1 and VGLUT-2 was increased by Ro61-8048, with no change in expression of vesicular GABA transporter or its co-localisation with vesicle-associated membrane protein-1. These data support the view that constitutive kynurenine metabolism normally plays a role in early embryonic brain development, and that interfering with it has profound consequences for neuronal structure and morphology, lasting into adulthood

    Aging restricts the ability of mesenchymal stem cells to promote the generation of oligodendrocytes during remyelination.

    Get PDF
    Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) that leads to severe neurological deficits. Due to their immunomodulatory and neuroprotective activities and their ability to promote the generation of oligodendrocytes, mesenchymal stem cells (MSCs) are currently being developed for autologous cell therapy in MS. As aging reduces the regenerative capacity of all tissues, it is of relevance to investigate whether MSCs retain their pro-oligodendrogenic activity with increasing age. We demonstrate that MSCs derived from aged rats have a reduced capacity to induce oligodendrocyte differentiation of adult CNS stem/progenitor cells. Aging also abolished the ability of MSCs to enhance the generation of myelin-like sheaths in demyelinated cerebellar slice cultures. Finally, in a rat model for CNS demyelination, aging suppressed the capability of systemically transplanted MSCs to boost oligodendrocyte progenitor cell (OPC) differentiation during remyelination. Thus, aging restricts the ability of MSCs to support the generation of oligodendrocytes and consequently inhibits their capacity to enhance the generation of myelin-like sheaths. These findings may impact on the design of therapies using autologous MSCs in older MS patients.The authors would like to thank the following funding agencies for their support: Paracelsus Medical University PMU-FFF Long-Term Fellowship L-12/01/001-RIV (to and Stand-Alone Grant E-12/15/077-RIT (both to F.J.R.); Chilean Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) FONDECYT Program Regular Grant Nº 1161787 (to F.J.R.), Regular Grant Nº 1141015 (to L.F.B.); Chilean CONICYT PCI Program Grant Nº REDES170233 (to F.J.R.), Grant Nº REDES180139 and Grant Nº REDI170037; Chilean CONICYT FONDEFIDeA Program Grant Nº ID17AM0043 (to M.E.S. and F.J.R.); European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreements N HEALTH-F2-2011-278850 (INMiND) and HEALTH-F2-2011-279288 (IDEA). The work in the Küry laboratory was supported by the German Research Foundation (DFG; KU1934/2_1, KU1934/5-1) and the Christiane and Claudia Hempel Foundation for clinical and iBrain. The work in the Franklin laboratory was supported by grants from the UK Multiple Sclerosis Society and the Adelson Medical Research Foundation, and a core support grant from the Wellcome Trust and MRC to the Wellcome-MRC Cambridge Stem Cell Institute. In addition, the present work was supported by the state of Salzburg (to L.A.). We thank Armin Schneider, Sygnis Pharma AG Heidelberg, Germany, for the MBP promoter construct. We disclose any conflict of interest

    Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway

    Get PDF
    During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog
    corecore