1,547 research outputs found
Search for the rare decay Λc+ →pμ+μ-
The flavor-changing neutral-current (FCNC) decay Λþ c → pμþμ− (inclusion of the charge-conjugate processes is implied throughout) is expected to be heavily suppressed in the Standard Model (SM) by the Glashow-IliopoulosMaiani mechanism [1]. The branching fractions for shortdistance c → ulþl− contributions to the transition are expected to be of Oð10−9Þ in the SM but can be enhanced by effects beyond the SM. However, long-distance contributions proceeding via a tree-level amplitude, with an intermediate meson resonance decaying into a dimuon pair [2,3], can increase the branching fraction up to Oð10−6Þ [4]. The short-distance and hadronic contributions can be separated by splitting the data set into relevant regions of dimuon mass. The Λþ c → pμþμ− decay has been previously searched for by the BABAR Collaboration [5], yielding 11.1 5.0 2.5 events and an upper limit on the branching fraction of 4.4 × 10−5 at 90% C.L. Similar FCNC transitions for the b-quark system (b → slþl−) exhibit a pattern of consistent deviations from the current SM predictions both in branching fractions [6] and angular observables [7], with the combined significance reaching 4 to 5 standard deviations [8,9]. Processes involving c → ulþl− transitions are far less explored at both the experimental and theoretical levels, which makes such measurements desirable. Similar analyses of the D system have reported evidence for the longdistance contribution [10]; however, the short-distance contributions have not been established [11]
Observation of two new baryon resonances
Two structures are observed close to the kinematic threshold in the mass spectrum in a sample of proton-proton collision data, corresponding
to an integrated luminosity of 3.0 fb recorded by the LHCb experiment.
In the quark model, two baryonic resonances with quark content are
expected in this mass region: the spin-parity and
states, denoted and .
Interpreting the structures as these resonances, we measure the mass
differences and the width of the heavier state to be
MeV,
MeV,
MeV, where the first and second
uncertainties are statistical and systematic, respectively. The width of the
lighter state is consistent with zero, and we place an upper limit of
MeV at 95% confidence level. Relative
production rates of these states are also reported.Comment: 17 pages, 2 figure
Measurement of the CP-violating phase \phi s in Bs->J/\psi\pi+\pi- decays
Measurement of the mixing-induced CP-violating phase phi_s in Bs decays is of
prime importance in probing new physics. Here 7421 +/- 105 signal events from
the dominantly CP-odd final state J/\psi pi+ pi- are selected in 1/fb of pp
collision data collected at sqrt{s} = 7 TeV with the LHCb detector. A
time-dependent fit to the data yields a value of
phi_s=-0.019^{+0.173+0.004}_{-0.174-0.003} rad, consistent with the Standard
Model expectation. No evidence of direct CP violation is found.Comment: 15 pages, 10 figures; minor revisions on May 23, 201
Search for CP violation in D+→ϕπ+ and D+s→K0Sπ+ decays
A search for CP violation in D + → ϕπ + decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb−1 at a centre of mass energy of 7 TeV. The CP -violating asymmetry is measured to be (−0.04 ± 0.14 ± 0.14)% for candidates with K − K + mass within 20 MeV/c 2 of the ϕ meson mass. A search for a CP -violating asymmetry that varies across the ϕ mass region of the D + → K − K + π + Dalitz plot is also performed, and no evidence for CP violation is found. In addition, the CP asymmetry in the D+s→K0Sπ+ decay is measured to be (0.61 ± 0.83 ± 0.14)%
Observation of an Excited Bc+ State
Using pp collision data corresponding to an integrated luminosity of 8.5 fb-1 recorded by the LHCb experiment at center-of-mass energies of s=7, 8, and 13 TeV, the observation of an excited Bc+ state in the Bc+π+π- invariant-mass spectrum is reported. The observed peak has a mass of 6841.2±0.6(stat)±0.1(syst)±0.8(Bc+) MeV/c2, where the last uncertainty is due to the limited knowledge of the Bc+ mass. It is consistent with expectations of the Bc∗(2S31)+ state reconstructed without the low-energy photon from the Bc∗(1S31)+→Bc+γ decay following Bc∗(2S31)+→Bc∗(1S31)+π+π-. A second state is seen with a global (local) statistical significance of 2.2σ (3.2σ) and a mass of 6872.1±1.3(stat)±0.1(syst)±0.8(Bc+) MeV/c2, and is consistent with the Bc(2S10)+ state. These mass measurements are the most precise to date
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−
The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
Observation of associated production of a boson with a meson in the~forward region
A search for associated production of a boson with an open charm meson is
presented using a data sample, corresponding to an integrated luminosity of
of proton--proton collisions at a centre-of-mass energy
of 7\,TeV, collected by the LHCb experiment. %% Seven candidate events for
associated production of a boson with a meson and four candidate
events for a boson with a meson are observed with a combined
significance of 5.1standard deviations. The production cross-sections in the
forward region are measured to be where the first uncertainty is statistical and the
second systematic.Comment: 18 pages, 2 figure
Observation of resonances consistent with pentaquark states in decays
Observations of exotic structures in the channel, that we refer to
as pentaquark-charmonium states, in decays are
presented. The data sample corresponds to an integrated luminosity of 3/fb
acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude
analysis is performed on the three-body final-state that reproduces the
two-body mass and angular distributions. To obtain a satisfactory fit of the
structures seen in the mass spectrum, it is necessary to include two
Breit-Wigner amplitudes that each describe a resonant state. The significance
of each of these resonances is more than 9 standard deviations. One has a mass
of MeV and a width of MeV, while the second
is narrower, with a mass of MeV and a width of MeV. The preferred assignments are of opposite parity, with one
state having spin 3/2 and the other 5/2.Comment: 48 pages, 18 figures including the supplementary material, v2 after
referee's comments, now 19 figure
- …