348 research outputs found

    Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage

    Get PDF
    Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C(6) aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose–response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction response, possibly reflecting a systemic response. The dose–response relationships can also vary in dependence on plant genotype, herbivore feeding behavior, and plant pre-stress physiological status. Overall, the evidence suggests that there are quantitative relationships between the biotic stress severity and induced volatile emissions. These relationships constitute an encouraging platform to develop quantitative plant stress response models

    Di-μ-chlorido-bis­{[2-(morpholinometh­yl)phenyl-κ2 C 1,N]palladium(II)}

    Get PDF
    The title compound, [Pd2(C11H14NO)2Cl2], has a dimeric structure with Cl atoms bridging the two Pd atoms, one half of the mol­ecule being generated by symmetry due to the crystallographic inversion centre located in the middle of the perfectly planar Pd2Cl2 ring. The five-membered ring adopts an envelope conformation, while the morpholino group has a chair conformation. The geometry around the metal centres is distorted square-planar, as a result of a strong intra­molecular N→Pd coordination trans to a Pd—Cl bond. In the crystal structure, the dimeric structure is strengthened by inter­molecular C—H⋯Cl hydrogen bonds. C—H⋯Cphen­yl inter­actions link the dimers into a columnar supra­molecular array along the a axis; the dimers are further connected by C—H⋯Ph inter­actions into a three-dimensional supra­molecular arrangement

    Palladium(ii) complexes with chiral organoantimony(iii) ligands. Solution behaviour and solid state structures

    Get PDF
    The chiral compound (2-Me2NCH2C6H 4)PhSbCl (1) was obtained from (2-Me2NCH2C 6H4)Li and PhSbCl2 in 1:1 molar ratio, while (2-Me2NCH2C6H4)Mes2Sb (2) was prepared from (2-Me2NCH2C6H 4)SbCl2 and MesMgBr in 1:2 molar ratio. The compounds 1 and 2 were used to obtain the Pd(ii)/stibine complexes: [Me2NHCH 2C6H5]+[PdCl3SbCl(Ph) (C6H4CH2NMe2-2)-Sb]- (3) and [PdCl2SbMes2(C6H4CH 2NMe2-2)-N,Sb] (4). All the compounds were characterized by multinuclear NMR spectroscopy in solution, elemental analysis, mass spectrometry and single-crystal X-ray diffraction studies. In compounds 1-3 the coordination geometry around the antimony atom is pseudo-trigonal bipyramidal, while in compound 4 a tetrahedral geometry around the antimony atom is observed. Theoretical calculations at the DFT level on compounds 1-4 were used in order to gain insight into the nature of the coordinative bonds

    Determination of changes in the microbial and chemical composition of Taga cheese during maturation

    Get PDF
    Publication history: Accepted - 9 November 2020; Published online - 3 December 2020Țaga cheese is a traditional Romanian smear-ripened cheese made from bovine milk and identified with the name of the village and caves where it is produced. As no previously reported microbiological and chemical studies have been undertaken on this product, this research aimed to investigate the microbiological and biochemical characteristics which ensure the uniqueness of Țaga cheese during the ripening process, to inform producers as to key quality determinants. Cheese samples, consisting of retail blocks, were collected on days 2, 5, 12, 18, and 25 of the ripening process. The evolution of lactic microbiota during the production and maturation of traditional cheeses involves isolating lactic acid microorganisms present in cheese. Cheese samples were analyzed for pH, fat, NaCl, fatty acids, and volatile compounds. The microbial ecosystem naturally changes during the maturation process, leading to variation in the microorganisms involved during ripening. Our results show that specific bacteria were identified in high levels during the entire ripening process and may be responsible for milk fat lipolysis contributing directly to cheese flavor by imparting detailed fatty acid flavor notes, or indirectly as precursors formation of other flavor compounds.This paper was published with the support of the Romanian Ministry of Research and Innovation through Program 1 - Development of the National Research and Development System, Subprogram 1.2-Institutional Performance - Projects for Financing the Excellence in CDI, Contract No. 37PFE-2018-2020

    Changes in floral bouquets from compound-specific responses to increasing temperatures

    Get PDF
    We addressed the potential effects of changes in ambient temperature on the profiles of volatile emissions from flowers and tested whether warming could induce significant quantitative and qualitative changes in floral emissions, which would potentially interfere with plant-pollinator chemical communication. We measured the temperature responses of floral emissions of various common species of Mediterranean plants using dynamic headspace sampling and used GC-MS to identify and quantify the emitted terpenes. Floral emissions increased with temperature to an optimum and thereafter decreased. The responses to temperature modeled here predicted increases in the rates of floral terpene emission of 0.03-1.4-fold, depending on the species, in response to an increase of 1 °C in the mean global ambient temperature. Under the warmest projections that predict a maximum increase of 5 °C in the mean temperature of Mediterranean climates in the Northern Hemisphere by the end of the century, our models predicted increases in the rates of floral terpene emissions of 0.34-9.1-fold, depending on the species. The species with the lowest emission rates had the highest relative increases in floral terpene emissions with temperature increases of 1-5 °C. The response of floral emissions to temperature differed among species and among different compounds within the species. Warming not only increased the rates of total emissions, but also changed the ratios among compounds that constituted the floral scents, i.e. increased the signal for pollinators, but also importantly altered the signal fidelity and probability of identification by pollinators, especially for specialists with a strong reliance on species-specific floral blends

    Stronger diversity effects with increased environmental stress : a study of multitrophic interactions between oak, powdery mildew and ladybirds

    Get PDF
    Recent research has suggested that increasing neighbourhood tree species diversity may mitigate the impact of pests or pathogens by supporting the activities of their natural enemies and/or reducing the density of available hosts. In this study, we attempted to assess these mechanisms in a multitrophic study system of young oak (Quercus), oak powdery mildew (PM, caused by Erysiphe spp.) and a mycophagous ladybird (Psyllobora vigintiduo-punctata). We assessed ladybird mycophagy on oak PM in function of different neighbourhood tree species compositions. We also evaluated whether these species interactions were modulated by environmental conditions as suggested by the Stress Gradient Hypothesis. We adopted a complementary approach of a field experiment where we monitored oak saplings subjected to a reduced rainfall gradient in a young planted forest consisting of different tree species mixtures, as well as a lab experiment where we independently evaluated the effect of different watering treatments on PM infections and ladybird mycophagy. In the field experiment, we found effects of neighbourhood tree species richness on ladybird mycophagy becoming more positive as the target trees received less water. This effect was only found as weather conditions grew drier. In the lab experiment, we found a preference of ladybirds to graze on infected leaves from trees that received less water. We discuss potential mechanisms that might explain this preference, such as emissions of volatile leaf chemicals. Our results are in line with the expectations of the Natural Enemies Hypothesis and support the hypothesis that biodiversity effects become stronger with increased environmental stress

    Estimations of isoprenoid emission capacity from enclosure studies: measurements, data processing, quality and standardized measurement protocols

    Get PDF
    The capacity for volatile isoprenoid production under standardized environmental conditions at a certain time (ES, the emission factor) is a key characteristic in constructing isoprenoid emission inventories. However, there is large variation in published ES estimates for any given species partly driven by dynamic modifications in ES due to acclimation and stress responses. Here we review additional sources of variation in ES estimates that are due to measurement and analytical techniques and calculation and averaging procedures, and demonstrate that estimations of ES critically depend on applied experimental protocols and on data processing and reporting. A great variety of experimental setups has been used in the past, contributing to study-to-study variations in ES estimates. We suggest that past experimental data should be distributed into broad quality classes depending on whether the data can or cannot be considered quantitative based on rigorous experimental standards. Apart from analytical issues, the accuracy of ES values is strongly driven by extrapolation and integration errors introduced during data processing. Additional sources of error, especially in meta-database construction, can further arise from inconsistent use of units and expression bases of ES. We propose a standardized experimental protocol for BVOC estimations and highlight basic meta-information that we strongly recommend to report with any ES measurement. We conclude that standardization of experimental and calculation protocols and critical examination of past reports is essential for development of accurate emission factor databases.JRC.H.7-Climate Risk Managemen

    Cellular uptake of ribonuclease A-functionalised core-shell silica microspheres

    Get PDF
    Analysis of protein function in a cellular context ideally requires physiologically representative levels of that protein. Thus conventional nucleic acid-based transfection methods are far from ideal owing to the over expression that generally results. Likewise fusions with protein transduction domains can be problematic whilst delivery via liposomes/nanoparticles typically results in endosomal localisation. Recently polymer microspheres have been reported to be highly effective at delivering proteins into cells and thus provide a viable new alternative for protein delivery (protein transduction). Herein we describe the successful delivery of active ribonuclease A into HeLa cells via novel polymer core-silica shell microspheres. Specifically, poly(styrene-co-vinylbenzylisothiouronium chloride) core particles, generated by dispersion polymerisation, were coated with a poly(styrene-co-trimethoxysilylpropyl methacrylate) shell. The resultant core-shell morphology was characterised by transmission electron, scanning electron and fluorescence confocal microscopies, whilst size and surface charge was assessed by dynamic light scattering and zeta-potential measurements, respectively. Subsequently ribonuclease A was coupled to the microspheres using simple carbodiimide chemistry. Gel electrophoresis confirmed and quantified the activity of the immobilised enzyme against purified HeLa RNA. Finally, the polymer-protein particles were evaluated as protein-transduction vectors in vitro to deliver active ribonuclease A to HeLa cells. Cellular uptake of the microspheres was successful and resulted in reduced levels of both intracellular RNA and cell viability

    Optical coherence tomography versus microscopy for the study of Aloe Vera leaves

    Get PDF
    The aim of this study is to compare the advantages and limitations of two optical methods, namely Optical Coherence Tomography (OCT) and microscopy for minute investigation of the structure of Aloe Vera leaves. Microscopy has the advantage of a higher resolution, but the disadvantage that the object under investigation is completely damaged (as the leaf must be peeled off). On the contrary, an advantage of OCT is that it is non-invasive with the potential added benefit of on-site measurements (if portable). Depending on the OCT method used, different resolution values are achievable. In principle, Time Domain (TD) OCT can achieve lateral resolutions similar to microscopy but the method is slow for depth investigations. Spectrometer-based and Swept Source (SS) OCT trade lateral resolution for speed of acquisition. In order to acquire sufficient axial range A-scans, low numerical aperture interface optics is used, that exhibits lower transversal resolution. The main limitation of the spectrometer based and swept source OCT is therefore the achievable lateral resolution, which might not be good enough to reveal the detailed structure of noteworthy parts of leaves, for example, their stomata. The present study experimentally compares Aloe Vera data obtained using an optical microscope at different magnifications, and an in-house SS-OCT system with a 1310 nm center wavelength. For gathering additional information, an analysis of the normalized A-scan OCT images was also performed. This reveals additional parts of the leaf structure, while it still falls short of what can be obtained by using conventional microscopy
    corecore