
 

1 

 

Title: Changes in floral bouquets from compound-specific responses to increasing 

temperatures 

Running head: Temperature responses of floral emissions 

 

Gerard Farré-Armengol1,2,*, Iolanda Filella1,2, Joan Llusià1,2, Ülo Niinemets3,4 and 

Josep Peñuelas1,2 

1CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08193 

Barcelona, Catalonia, Spain 

2 CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain 

3 Institute of Agricultural and Environmental Sciences, Estonian University of Life 

Sciences, Kreutzwaldi 1, Tartu 51014, Estonia 

4 Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia 

 

*corresponding author’s e-mail: g.farre@creaf.uab.es 

 

Keywords: chemical communication, emission profiles, flower volatile emissions, 

flower physiology, global warming, monoterpenes, physicochemical properties, 

sesquiterpenes, temperature-response curve, volatility  

 

Primary Research Article 



 

2 

 

Abstract 

We addressed the potential effects of changes in ambient temperature on the profiles of 

volatile emissions from flowers and tested whether warming could induce significant 

quantitative and qualitative changes in floral emissions, which would potentially 

interfere with plant-pollinator chemical communication. We measured the temperature 

responses of floral emissions of various common species of Mediterranean plants using 

dynamic headspace sampling and used GC-MS to identify and quantify the emitted 

terpenes. Floral emissions increased with temperature to an optimum and thereafter 

decreased. The responses to temperature modeled here predicted increases in the rates 

of floral terpene emission of 0.03-1.4-fold, depending on the species, in response to an 

increase of 1 ºC in the mean global ambient temperature. Under the warmest projections 

that predict a maximum increase of 5 ºC in the mean temperature of Mediterranean 

climates in the Northern Hemisphere by the end of the century, our models predicted 

increases in the rates of floral terpene emissions of 0.34-9.1-fold,depending on the 

species. The species with the lowest emission rates had the highest relative increases in 

floral terpene emissions with temperature increases of 1-5 ºC. The response of floral 

emissions to temperature differed among species and among different compounds 

within the species. Warming not only increased the rates of total emissions, but also 

changed the ratios among compounds that constituted the floral scents, i.e. increased the 

signal for pollinators, but also importantly altered the signal fidelity and probability of 

identification by pollinators, especially for specialists with a strong reliance on species-

specific floral blends. 
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Introduction 

Plants use biogenic volatile organic compounds (BVOCs) to interact with both 

beneficial (pollinators, seed dispersers and carnivores) and detrimental (herbivores, 

parasites and competitors) organisms (Dudareva et al., 2006; Fineschi et al., 2013; 

Trowbridge & Stoy, 2013). Floral blends of volatiles constitute private communication 

channels between emitter plants and those animal receivers to which the volatiles are 

directed (Raguso, 2008). Constitutively emitted BVOCs become specific signatures that 

allow organisms to identify the plant species and the tissue from which the scents are 

emitted. BVOCs may serve, for example, to promote reproductive isolation among 

compatible, sympatric, closely related species by providing pollinators with 

distinguishable floral scents (Füssel et al., 2007). Plants present a diverse array of 

volatile compounds to attract pollinators to their flowers for assuring pollination 

(Knudsen et al., 2006), and pollinators use the scent trails of floral emissions to locate 

flowers (Cardé & Willis, 2008). Mixtures of floral BVOCs allow pollinators to identify 

the plant species emitting the scent and provide diverse information about the flowers, 

such as their developmental stage (Mactavish & Menary, 1997; Proffit et al., 2008; 

Goodrich & Raguso, 2009) and the availability and quality of their rewards (Howell & 

Alarcón, 2007; Wright et al., 2009). In many cases, floral chemical messages directed at 

pollinators contain specific mixtures of compounds with specific ratios of each emitted 

volatile (Raguso, 2008). 

Environmental conditions can affect BVOC emissions from plants. In particular, 

temperature is an abiotic factor that strongly affects plant emissions (Peñuelas, 2008; 

Peñuelas & Staudt, 2010; Grote et al., 2013). Temperature can affect emissions in two 

ways: first, through its effects on the physicochemical properties of BVOCs, such as 
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volatility, solubility and diffusivity; and second, by affecting various plant physiological 

traits that play a role in some of the phases of BVOC emission, e.g. biosynthesis of 

BVOCs, stomatal resistance or regulated processes of release (Niinemets et al., 2004). 

The effect of temperature on physicochemical properties is clearer than the effect on 

plant physiology, which depends on the species (Kesselmeier & Staudt, 1999), the 

effects of past and present stresses on the physiological state of a plant (Fortunati et al., 

2008; Niinemets, 2010) and environmental conditions such as temperature and light that 

modify the rate of BVOC synthesis (Penuelas & Llusia, 2001; Niinemets et al., 2010a). 

Higher temperatures enhance the activities of enzymes involved in BVOC biosynthesis, 

reduce BVOC solubilities and increase BVOC volatilities (vapor pressure and 

partitioning to the gas phase) and diffusivities along cellular phases and thereby 

decrease the resistance of emission pathways, thus promoting an increase in the rates of 

emission (Niinemets et al., 2004; Harley, 2013). Different compounds have different 

chemical properties and volatilities, which affect the rate of release from internal 

tissues. Compounds with higher volatilities will be more rapidly released, while those 

with lower volatilities will need to accumulate in higher amounts in intratissular non-

specific storage pools and reach higher internal concentrations to be released at similar 

rates (Niinemets et al., 2004; Noe et al., 2006).  

Environmental conditions are changing globally due to human activities, and the 

main drivers of global change are likely to increase emissions of BVOCs by plants 

(Peñuelas & Staudt, 2010). The mean surface temperature in the Mediterranean Basin is 

projected to increase by approximately 1-5 ºC by the end of the century relative to the 

period 1850-1900 (IPCC, 2013). A temperature increase of this magnitude will induce 

several effects on the physiology and physicochemistry of living organisms. The rate of 
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the current warming will exceed the ability of most plant populations and species to 

migrate (Neilson et al., 2005), so they will not be able to move toward cooler areas to 

counteract the effects of global warming. Plants will thus inevitably be submitted to 

warmer temperatures that will cause various physiological changes and unavoidable 

derived effects on various functions. 

The volatility of each compound has a compound-specific dependence on 

temperature (Llusia & Penuelas, 2000; Copolovici & Niinemets, 2005; Copolovici et 

al., 2005). Warming may therefore not only induce a general increase in BVOC 

emissions, it may also induce differential changes in the rates of compound emissions 

due to differences in the physicochemical properties of the compounds (Niinemets & 

Reichstein, 2002; Noe et al., 2006) and may therefore affect the ratios of the compounds 

in the floral blends (Niinemets & Reichstein, 2002). Staudt & Bertin (1998) observed 

significant changes in the relative composition of terpenes in the foliar emissions from 

Quercus ilex along a temperature gradient of 5-45 ºC. Major changes in the emission 

profile were due to a stronger response of the acyclic monoterpenes cis- and trans-β-

ocimene from 35 to 45 ºC, compared to that of mono- and bicyclic monoterpenes that 

stabilized near 35 ºC, and to the induction of sesquiterpene caryophyllene emissions 

(Staudt & Bertin, 1998). Induced emissions due to heat stress at extreme temperatures 

(Joó et al., 2011; Copolovici et al., 2012) may also induce qualitative changes in floral 

scents. All these changes in the amount and relative composition of plant emissions can 

affect the correct establishment of specific communication channels between plants and 

mutualists. 

Changes in temperature and other accompanying factors associated with global 

change are thus expected to induce quantitative and qualitative changes in floral BVOC 
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emissions (Peñuelas, 2008; Peñuelas & Staudt, 2010) that could affect plant-pollinator 

interactions in several ways (Farré-Armengol et al., 2013). Our goals were to assess the 

effects of warming on floral emissions and to test our hypothesis that increases in 

ambient temperature would induce quantitative and qualitative variations in floral 

terpene emissions. We also quantified these variations in seven widespread species of 

Mediterranean plants with differing flowering phenologies. 
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Materials and Methods 

Measurement of temperature responses 

Seven common Mediterranean species (Globularia alypum (L.) Greuter, Erica 

multiflora L., Q. ilex L., Dorycnium pentaphyllum Scop., Spartium junceum L., Sonchus 

tenerrimus L. and Dittrichia viscosa L.) growing in the field were selected for the 

experiments. The plants were chosen from various locations in the province of 

Barcelona (Catalonia, Spain). We chose the species taking into consideration their 

commonness and ecological representativeness. We chose species that flower at 

different seasons of the year: Globularia alypum and Erica multiflora flowered in 

winter, Quercus ilex and Dorycnium pentaphyllum in spring, Sparium junceum and 

Sonchus tenerrimus in summer, and Dittrichia viscosa from late summer to early 

autumn. Additionally, Quercus ilex was chosen as a model of a typical anemophilous 

species. The measurements were conducted at periods of peak flowering, except for D. 

viscosa that was tested both in late summer and again in early autumn at the end of the 

flowering period. The experimental setup for the winter-flowering species G. alypum 

and E. multiflora only allowed for the measurement of temperature responses to 30 ºC. 

In all other cases, the temperature responses were measured over a temperature range of 

15-40 ºC, at intervals of 5 ºC. We measured 3-6 replicate temperature responses per 

species, and the response of each replicate was measured from a different plant.  

 Samples were collected under field conditions using a dynamic headspace 

technique. We employed a portable infrared gas analyzer (IRGA) system (LC-Pro+, 

ADC BioScieic Ltd., Great Amwell) to create the required conditions of temperature 

and to provide a constant light intensity of 1000 μmol m-2 s-1 for the sample tissue and 

to record periodic measurements of variables of gas exchange. One or several attached 
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flowers for each sample were enclosed in the chamber of the IRGA. We used either a 

broad leaf chamber (12 cm3) or a conifer leaf chamber (175 cm3), depending on the size 

of the flowers of each species (but always the same size of chamber for all samples from 

each species). We collected the samples of terpene emissions after setting the required 

quantum flux density and temperature and after an acclimation period of approximately 

10 min or the time needed to reach a steady-state exchange of CO2 and H2O. The air 

exiting the leaf cuvette, with a mean flux of air of approximately 200-250 ml min-1, was 

directed through a Teflon tube to a tube filled with the adsorbents Tenax (50% vol.) and 

Carbotrap (50% vol.), which collected the terpenes emitted by the flower(s) over a 

period of 10-15 minutes. The same process was repeated with empty leaf cuvettes that 

served as blanks of the system. At least two blank samples were collected for each 

curve, one at the beginning of the emission samplings and another at the end. After each 

sampling sequence we collected the flower samples to dry and weigh them for emission 

rate calculations. 

 

Terpene analyses 

The terpene samples in the adsorbent tubes were thermally desorbed, and the samples 

were analyzed by gas cromatography-mass spectrometry (GC-MS; GC: 7890A, MS: 

5975C inert mass spectrometric detector with Triple-Axis Detector, Agilent 

Technologies, Palo Alto, CA, USA). Samples were injected into a 30 m x 0.25 mm x 

0.25 μm capillary column (HP-5MS, Agilent Technologies, Palo Alto, CA, USA). 

Helium flow was 1 ml min-1, and total run time was 26 min. After injection, the sample 

was maintained for 1 min. at 35 °C, the temperature was then increased at 15 ºC min-1 to 

150 °C and maintained for 5 min, then increased at 50 °C min-1 to 250 ºC and 
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maintained for 5 min and then increased at 30 °C min-1 to 280 °C and maintained for 5 

min. 

The terpenes were identified by comparing the retention times with standards 

(Fluka, Buchs, Switzerland) that had been injected into clean adsorbent tubes, and the 

fractionation mass spectra were compared with standard spectra and spectra in the 

Nist05a and wiley7n mass spectral libraries. Calibration curves for the common 

terpenes α-pinene, β-pinene, D-limonene, γ-terpinene, linalool and α-humulene were 

determined each day of the analysis. The terpene calibration curves (n=4 different 

terpene concentrations) were always highly significant (r2>0.99 for the relationship 

between the signal and the amount of compound injected). Terpene concentrations were 

determined from the calibration curves. 

 

Statistical treatment 

We used the lme function of the nlme package of the R software (Pinheiro et al., 2013) 

to analyze the changes in the relative percentage ratios of the terpene compounds along 

temperature gradients. We considered plant individuals as a random factor in the 

analysis. 

The temperature-response curves of floral terpene emissions were fitted by local 

polynomial functions using the loess function of R (Cleveland et al., 1992; R 

Development Core Team, 2011). The fitted models were used to calculate the predicted 

emission rates of floral terpenes at the mean maximum temperature of the month of the 

flowering peak of the species at the sampling location (Tpeak). Thereafter, we used the 

fitted models to predict the emission rates at temperatures of 1, 2, 3, 4 and 5 ºC above 
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Tpeak to explore the potential changes in floral terpene emissions in response to the 

temperature increases projected for the coming decades by global circulation models 

(IPCC 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 

 

Results 

Total terpene emissions 

The rates of terpene emissions initially increased with temperature in all species to an 

optimum temperature and decreased in most species at higher temperatures (Figure 1). 

The temperature responses varied, depending on species and the spectrum of 

compounds emitted. The flowers of G. alypum and E. multiflora had maximum terpene 

emissions at 25-30 ºC. Quercus ilex floral emission rates reached a maximum at 

approximately 30 ºC. The rates of terpene emission from the flowers of D. 

pentaphyllum increased with temperature up to 35 ºC and decreased slightly at 40 ºC. 

The rates of terpene emission from the flowers of D. viscosa, S. junceum and S. 

tenerrimus increased with temperature even at the highest tested temperature of 40 ºC, 

and the maximum increase was observed between temperatures of 30 to 40 ºC. The 

measurements conducted on D. viscosa in early autumn, however, changed considerably 

compared with those in late summer. The emission maxima in early autumn occurred at 

25-30 ºC, while the maxima in late summer occurred at 40 ºC or higher.  

 

Relative terpene composition of floral scents 

The relative composition of floral emissions varied with temperature (Figure 2). Only 

some compounds in some species, however, displayed significant trends in the relative 

abundance along temperature gradients. D-limonene, which was predominant at low 

temperatures, was partially substituted by1R-α-pinene at higher temperatures in the 

floral scent of G. alypum. The patterns of decrease and increase in the relative 

abundances of D-limonene and 1R-α-pinene, however, were not statistically significant. 
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Terpene ratios in the floral scent of E. multiflora did not change significantly with 

temperature. The floral emissions from Q. ilex were entirely composed of D-limonene at 

high temperatures (35 and 40 ºC) and contained other monoterpenes from 20 to 30 ºC, 

but the percentages of each compound followed no significant trends. The relative 

composition of terpenes in the floral scent of D. pentaphyllum showed a gradual 

substitution of 3-carene, which experienced a reduction in its relative percentage 

(P<0.001) with increasing temperature, by the two isomers (E)- and (Z)-β-ocimene that 

increased their relative abundances (P<0.001 and P=0.001, respectively). In the floral 

scent of S. junceum, the monoterpene 1R-α-pinene was gradually substituted by the 

sesquiterpene α-farnesene as temperature increased, but the trends were not significant. 

The floral scent of S. tenerrimus was entirely composed at low temperatures of 1R-α-

pinene, which decreased at higher temperatures (P=0.07) when levels of 3-carene 

increased (P=0.07).  

The floral emissions from D. viscosa in late summer increased significantly with 

temperature and also changed in the relative composition of terpenes along the 

temperature gradient. β-pinene (P=0.004) and 1S-α-pinene (P=0.01) increased steadily 

in relative ratio, while D-limonene (P=0.07) and camphene (P=0.09) decreased. The 

relative composition of terpenes in the floral emissions from D. viscosa in early autumn 

did not vary significantly in the temperature-response curves, and the diversity of 

emitted volatiles was lower than in late summer. The emissions in early autumn 

particularly lacked eucalyptol and β-phellandrene, which were the most abundant 

terpenes in the floral scent of D. viscosa in late summer. 
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Predicted changes in total and relative floral emissions of terpenes with future 

warming 

The magnitude of the stimulating effect of temperature on total emissions of floral 

terpenes varied among species. The modeled rates of floral terpene emission would 

increase 0.03-1.4-fold with a 1 ºC increase in mean maximum temperature, depending 

on the species (Table 1). Under the warmest scenario projected by the IPCC (2013), 

which predicts a maximum increase of 5 ºC in mean maximum temperatures for this 

century in the Mediterranean climates of the Northern Hemisphere, rates of floral 

terpene emissions would increase 0.34-9.1-fold. Under global warming ranging from +1 

to +5 ºC, S. junceum and Q. ilex would have the highest relative increases in the rates of 

floral terpene emissions (1.4-9.1- and 0.33-7-fold, respectively); G. alypum, D. 

pentaphyllum and S. tenerrimus would have moderate relative increases (0.1-2.55-, 

0.18-1.02- and 0.34-2.22-fold, respectively) and D. viscosa in late summer and early 

autumn and E. multiflora would have smaller relative increases (0.10-0.69-, 0.12-0.68- 

and 0.03-0.34-fold, respectively). 
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Discussion 

Total terpene emissions 

Our results confirm a generalized pattern of increase in the rates of floral terpene 

emissions with temperature, especially within the temperature range of 25-35 ºC. The 

terpenes were emitted at low rates from the flowers of the anemophilous tree Q. ilex, as 

can be expected for a species that does not need to attract pollinators. We detected, 

however, some ubiquitous monoterpenes, whose emission rates reached a maximum at 

approximately 30 ºC. These results support those from Hu et al. (2013) who found an 

increase in floral emissions from 10 to 30 ºC, followed by a decrease at 40 ºC. Our 

results are also similar to the well-characterized temperature response of BVOC 

emissions in leaves (Guenther et al., 1999; Penuelas & Llusia, 2001; Niinemets et al., 

2010b; Peñuelas & Staudt, 2010).  

The global pattern of increase in floral emissions with temperature may in part 

be due to the temperature dependencies of the physicochemical properties of terpenes 

and to the enzymatic activities of terpene synthases, all of which could enhance 

emissions with warming. Additionally, the physiology of flowers may affect the 

responses of floral emissions to temperature. In fact, the optimum temperatures for 

floral emissions varied among species even though these species shared most of the 

main compounds in their floral scents. These variations in the optimum temperatures 

among species, therefore, cannot be due to differences in the physicochemical 

properties of specific compounds and are also not driven by compound-specific optimal 

temperatures. These factors lead to the assumption that species-specific traits of floral 

physiology play an additional and important role in determining the responses of floral 

emissions to temperature. Floral physiology controls the production of each compound 
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through the regulation of transcription, production and activity of enzymes and the 

concentrations of the substrates of these enzymes (Dudareva & Pichersky, 2000; van 

Schie et al., 2006). A broad array of terpene synthases are responsible for the formation 

of floral volatiles (Pichersky et al., 2006; Dudareva & Pichersky, 2008). Some of these 

synthases are highly specific, forming only one product, while others form multiple 

products (Dudareva et al., 1996, 2003; Nagegowda et al., 2008; Memari & Pazouki, 

2013). In response to variable temperature conditions, floral physiology can thus modify 

biosynthetic activity to regulate the emission of each floral compound or of multiple 

compounds simultaneously, depending on synthase specificity. 

 

Relative terpene compositions of floral scents 

The magnitude of the changes to the relative composition of floral terpene blends driven 

by temperature also varied among species. The temperature-driven shifts observed in 

floral terpene composition (Figure 2) allow us to predict some compositional changes in 

the floral terpene blends in response to warming. The changes in relative floral terpene 

composition after increasing the temperature 5 ºC were not significant (Figure 2), but 

they followed the significant trends of change over the entire temperature responses 

described in the previous section. For D. pentaphyllum (20-25 ºC) and S. junceum (25-

30 ºC), additional compounds that are not emitted at the current mean maximum 

temperature of the flowering period are expected to be present in floral blends in 

warmer climates ((Z)-ß-ocimene and α-farnesene, respectively). The floral blend of G. 

alypum (15-20 ºC) may not drastically change compositionally, except for the loss of 

camphene from the blend. The relative ratios of various compounds would change 

subtly in the floral terpene emissions from E. multiflora (15-20 ºC), Q. ilex (20-25 ºC), 
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S. tenerrimus (30-35 ºC) and D. viscosa (25-30 ºC in late summer; 20-25 ºC in early 

autumn). Relative increases in 1R-α-pinene over D-limonene are predicted for the floral 

emissions of E. multiflora and Q. ilex and the D. viscosa plants flowering in early 

autumn. A relative increase of 3-carene over 1R-α-pinene is predicted for the floral 

blend of S. tenerrimus. A relative increase of eucalyptol and 1R-α-pinene over α-

terpinolene and D-limonene is predicted for the floral emissions of D. viscosa plants 

flowering in late summer. All these compositional changes are in agreement with the 

findings of Hu et al. (2013) showing  that Lilium “siberia” plants emit different terpenes 

at different temperatures and also that the emission rates of different BVOC chemical 

groups (terpenes, aromatics, alkanes, aldehydes,...) show different temperature-response 

curves, leading to scent shifts not only in terpene composition but also in BVOC 

chemical groups. 

 

Seasonal variation of the temperature response 

We detected intraspecific seasonal changes in the temperature responses of total terpene 

emissions in D. viscosa, which was sampled in late summer and again in autumn. We 

also observed a reduction in the diversity of terpene signatures constituting the floral 

blend in autumn. Intraspecific seasonal differences in the responses of terpene emissions 

to temperature have also been observed in leaves (Llusia et al., 2006). These seasonal 

changes also point to physiology as a factor that not only determines the temperature 

response of floral emissions but also modulates the shape of this response at the 

intraspecific level, depending on the season. Such intraspecific variations demonstrate 

large temperature-driven plasticity of plant physiological traits and clearly emphasize 
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the need to consider genotypic, epigenetic and phenotypic plasticity in estimating and 

modeling floral emissions. 

 

Altered floral emissions in a warmer world and implications for pollinators 

Projections of mean surface temperatures in the Mediterranean Basin predict an increase 

of approximately 1-5 ºC relative to the period 1850-1900 by the end of the century 

(IPCC, 2013). If a direct projection is made from the temperature responses obtained 

here, the rates of floral terpene emission by the end of the century could increase 0.34-

9.1-fold for a 5 ºC increase in mean maximum temperature during the flowering peak of 

the species (Table 1). Such a broad range of variation in the magnitude of the increase 

in floral terpene emissions in response to global warming points to future significant 

differences among species in the intensity of floral olfactive signals. The species with 

the highest relative increases in floral terpene emissions were those with the lowest rates 

of emission, so we may expect the lightly scented flowers of these species to 

significantly increase the intensity of their olfactive signals, while increases in the signal 

intensity of strongly scented species will be low to moderate. 

The relative composition of terpenes along temperature curves changed 

significantly in the floral blends of some species, especially at the highest temperature 

ranges and in those species that flower in the warmest seasons. Some of the observed 

changes were small, while some implied substitutions of the predominant compounds in 

the floral blend. The expected changes in the relative terpene composition of floral 

scents in response to an increase in temperature of 1-5 ºC, which are likely to occur by 

the end of the century (IPCC, 2013), may imply changes to the composition of floral 
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scents in some species (Figure 2). The changes in composition that we observed at 

higher temperatures included changes in the relative abundance of preexisting 

compounds, the appearance of new compounds or the disappearance of compounds that 

are emitted at current temperatures. Heat stress can cause variations in the composition 

of floral scents, such as the appearance or increase of some compounds only at high 

temperatures (Niinemets, 2010; Copolovici et al., 2012).  

An increase in terpene emissions in response to the predicted warmer 

temperatures from global warming may extend the physical range of the signals that 

pollinators detect and follow (Peñuelas, 2008; Peñuelas & Staudt, 2010; Niinemets et 

al., 2013) but also implies the attraction of a broader group of pollinators with varying 

efficiencies of signal reception. Higher concentrations of floral scents may also increase 

the importance of the olfactory stimulus, thus leading to enhanced initial responses and 

learned performances of the pollinators (Katzenberger et al., 2013). 

Increased floral emissions, however, may also have negative effects. A 

significant increase in the emission of floral terpenes, and in terpene emissions from 

other tissues that also respond positively to temperature increases, may imply higher 

metabolic costs and carbon consumption by secondary metabolic pathways that produce 

these compounds. The investment of carbon in terpene synthesis can account for up to 

10% (Peñuelas & Llusià, 2003) or even 20% (Sharkey & Loreto, 1993) of the carbon 

fixed by photosynthesis, indicating that the cost to plants can be a significant fraction of 

total plant production. In addition to stimulating the biosynthesis of terpenes, higher 

temperatures can enhance photosynthesis, which may partially compensate for the 

relative carbon cost of terpene production in the absence of other limiting factors, such 

as drought. The positive effect of enhanced signals for pollinators combined with the 
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negative effect of higher carbon costs of enhanced floral emissions would likely lead to 

changes in plant fitness.  

Additionally, qualitative changes in floral scents such as those found here may 

potentially interfere with the chemical communication between plants and pollinators 

(Beyaert & Hilker, 2014). The effect of qualitative changes in floral scents on 

pollinators may depend on the learning capabilities and innate preferences of the 

pollinators (Cunningham et al., 2004; Schiestl & Johnson, 2013). Pollinators with a 

high capacity to learn the floral odors of the plant species in the community may be 

more plastic and would adapt better to qualitative changes in floral scents, while those 

that rely more on innate constitutive olfactive preferences, inherited through the 

coevolution of their sensory systems with the floral emissions of their host plants, may 

be affected more (Cunningham et al., 2004; Schiestl & Johnson, 2013). In effect, 

learning new signals could give insect pollinators the flexibility to visit species for 

which they do not have an innate attraction, and this capability could allow them to 

exploit a dynamic floral environment (Riffell et al., 2013). Moreover, olfactive learning 

could help pollinators to adapt to subtle differences in floral scents that occur within 

species, such as those caused by changing environmental conditions, and therefore to 

continue to identify the scents by their changed blends of volatiles. For pollinators that 

rely on olfactive learning, such as generalist social bees (Dötterl & Vereecken, 2010), 

changes in the ratios of floral emissions may thus not involve serious problems of 

identification, because these pollinators continuously learn the scents of the flowering 

species in the community and establish associations between their scents and the 

resources they offer. In contrast, specialist pollinators such as hawkmoths that visit 

nocturnally blooming flowers (Raguso et al., 2003; Riffell et al., 2008), or specialist 
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bees visiting only one or a few host plant species (Filella et al., 2011), tend to rely to 

various degrees on innate preferences for the species-specific floral scents of the plants 

they visit, and these innate preferences may have a genetic basis that is much less 

dynamic than the acquired knowledge obtained by learning. 

 

Concluding remarks and future perspectives 

We demonstrated that temperature also has a general positive effect on terpene 

emissions that is well known in leaves. The relative increases calculated for floral 

terpene emissions indicate that very significant increases in the amount of floral scents 

will likely occur in a warmer world, although species can differ greatly in the rates of 

increase. We observed that the relative terpene ratios also vary with temperature, thus 

showing that temperature increase has the potential to induce qualitative changes in 

floral scent. We additionally observed seasonal changes in the effect of temperature on 

terpene emissions within a species. In summary, the amount of floral emissions may 

increase, with higher temperatures leading to enhanced olfactive signals for pollinators. 

The relative compositions of floral scents may also change to different degrees in 

different species, which could potentially interfere with the correct identification of 

flowers by pollinators. 

The effect of temperature on foliar emissions has been extensively explored, but 

the effect on floral emissions has not, so further experiments to test the observed trends 

in other plant species are warranted. Parallel tests of pollinator responses for 

determining the effect of the observed changes in floral scent on the identification of 

flowers by pollinators are also warranted.  
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Figure captions 

Figure 1. Emission rates (μg g DW-1 h-1) of single and total terpenes from the flowers 

of seven Mediterranean species over a temperature gradient of 15-40 ºC. The quantum 

flux density was maintained at 1000 μmol m-2 s-1 during the measurements. Error bars 

indicate SE (n=3-6). Letters indicate significant differences among the emission rates at 

different temperatures. 
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Figure 2. Ratios (%) of the rates of floral terpene emissions relative to the rates of total 

terpene emissions of each species over a temperature gradient of 15-40 ºC. Arrows 

indicate the hypothetical change (assuming no acclimation of emission profiles) in the 

composition of floral scents when the mean maximum temperature of the flowering 

period of each species was increased by 5 ºC, the maximum increase projected by IPCC 

(2013) by the end of the century. 
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Table 1. Predicted values of floral terpene emission rates (μg g DW-1 h-1) of the various 

species at the mean maximum temperature of the month of their flowering peaks (Tpeak) 

and at temperatures of 1, 2, 3, 4 and 5 ºC higher than Tpeak. The values were predicted 

from the loess functions that fitted the measurements of floral terpene emissions at 

different temperatures. 

Species  Floral emission rates (μg g DW-1 h-1) 
Tpeak Mean max +1 ºC +2 ºC +3 ºC +4 ºC +5 ºC 

Globularia alypum 14.3 0.4 0.44 0.66 0.94 1.23 1.42
Erica multiflora 14.3 4.41 4.54 4.94 5.31 5.63 5.92 
Quercus ilex 18.5 0.03 0.04 0.08 0.13 0.19 0.24 
Dorycnium pentaphyllum 20.5 0.84 0.99 1.18 1.38 1.56 1.7 
Spartium junceum 26 0.1 0.24 0.4 0.59 0.79 1.01 
Sonchus tenerrimus 29.9 1.02 1.37 1.76 2.20 2.71 3.28 
Dittrichia viscosa (late summer) 23.5 0.51 0.56 0.58 0.65 0.75 0.86 
Dittrichia viscosa (early autumn) 20.8 27.8 31.1 35 39.2 43 46.8 
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