477 research outputs found

    Une nouvelle mise en oeuvre de la méthode IIM pour les équations de Navier-Stokes en présence d'une force singulière

    Full text link
    Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

    Resolving the Stellar Populations in a z=4 Lensed Galaxy

    Get PDF
    We present deep near-infrared Keck/NIRC imaging of a recently-discovered z=4.04 galaxy (Frye & Broadhurst 1998). This is lensed by the rich foreground cluster Abell~2390 (z~0.23) into highly-magnified arcs 3-5arcsec in length. Our H- and K'-band NIRC imaging allows us to map the Balmer+4000Ang break amplitude. In combination with high-quality archival HST/WFPC2 data, we can spatially resolve stellar populations along the arcs. The WFPC2 images clearly reveal several bright knots, which correspond to sites of active star formation. However, there are considerable portions of the arcs are significantly redder, consistent with being observed >100Myr after star formation has ceased. Keck/LRIS long-slit spectroscopy along the arcs reveals that the Ly-alpha emission is spatially offset by ~1arcsec from the rest-UV continuum regions. We show that this line emission is most probably powered by star formation in neighboring HII regions, and that the z=4 system is unlikely to be an AGN.Comment: Accepted for publication in the Astrophysical Journal. Uses emulateapj.sty and graphics.sty (included). 34 pages - has 5 tables and 21 encapsulated postscript figures, 4 in colour mail (B&W versions also provided

    A Critical Reassessment of Q7 and Q8 Matrix Elements

    Get PDF
    We compare recent theoretical determinations of weak matrix elements of the electroweak penguin operators Q7 and Q8. We pay special attention to the renormalization scheme dependence of these determinations as well as to the influence of higher dimension operators in the different approaches.Comment: 11 pages, latex; minor change

    A new paradigm for space astrophysics mission design

    Get PDF
    Pursuing ground breaking science in a highly cost-constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s science ambitions requires a new paradigm of system design, development and manufacture. This paper explores the nature of the current paradigm and proposes a series of steps to guide the entire community to a sustainable future

    Episodic mass loss in binary evolution to the Wolf-Rayet phase: Keck and HST proper motions of RY Scuti's nebula

    Full text link
    Binary mass transfer via Roche-lobe overflow (RLOF) is a key channel for producing stripped-envelope Wolf-Rayet (WR) stars and may be critical to account for SN Ib/c progenitors. RY Scuti is an extremely rare example of a massive binary star caught in this brief but important phase. Its toroidal nebula indicates equatorial mass loss during RLOF, while the mass-gaining star is apparently embedded in an opaque accretion disk. RY Scuti's toroidal nebula has two components: an inner ionised double-ring system, and an outer dust torus that is twice the size of the ionised rings. We present two epochs of Lband Keck NGS-AO images of the dust torus, plus three epochs of HST images of the ionised gas rings. Proper motions show that the inner ionised rings and the outer dust torus came from two separate ejection events roughly 130 and 250 yr ago. This suggests that RLOF in massive contact binaries can be accompanied by eruptive and episodic burst of mass loss, reminiscent of LBVs. We speculate that the repeating outbursts may arise in the mass gainer from instabilities associated with a high accretion rate. If discrete mass-loss episodes in other RLOF binaries are accompanied by luminous outbursts, they might contribute to the population of extragalactic optical transients. When RLOF ends for RY Scuti, the overluminous mass gainer, currently surrounded by an accretion disk, will probably become a B[e] supergiant and may outshine the hotter mass-donor star that should die as a Type Ib/c supernova.Comment: 15 pages, 7 figures, submitted to MNRA

    GREAT3 results I: systematic errors in shear estimation and the impact of real galaxy morphology

    Get PDF
    We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically-varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about a spatially-varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by 1\sim 1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the S\'{e}rsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods' results support the simple model in which additive shear biases depend linearly on PSF ellipticity.Comment: 32 pages + 15 pages of technical appendices; 28 figures; submitted to MNRAS; latest version has minor updates in presentation of 4 figures, no changes in content or conclusion

    Star Formation from DLA Gas in the Outskirts of Lyman Break Galaxies at z~3

    Full text link
    We present evidence for spatially extended low surface brightness emission around Lyman break galaxies (LBGs) in the V band image of the Hubble Ultra Deep Field, corresponding to the z~3 rest-frame FUV light, which is a sensitive measure of star formation rates (SFRs). We find that the covering fraction of molecular gas at z~3 is not adequate to explain the emission in the outskirts of LBGs, while the covering fraction of neutral atomic-dominated hydrogen gas at high redshift is sufficient. We develop a theoretical framework to connect this emission around LBGs to the expected emission from neutral H I gas i.e., damped Lyman alpha systems (DLAs), using the Kennicutt-Schmidt (KS) relation. Working under the hypothesis that the observed FUV emission in the outskirts of LBGs is from in situ star formation in atomic-dominated hydrogen gas, the results suggest that the SFR efficiency in such gas at z~3 is between factors of 10 and 50 lower than predictions based on the local KS relation. The total SFR density in atomic-dominated gas at z~3 is constrained to be ~10% of that observed from the inner regions of LBGs. In addition, the metals produced by in situ star formation in the outskirts of LBGs yield metallicities comparable to those of DLAs, which is a possible solution to the "Missing Metals" problem for DLAs. Finally, the atomic-dominated gas in the outskirts of galaxies at both high and low redshifts has similar reduced SFR efficiencies and is consistent with the same power law.Comment: 26 pages, 12 figures, 2 tables, appendix, accepted by ApJ, proof corrections include

    Mechanistic insight into acrylate metabolism and detoxification in marine dimethylsulfoniopropionate-catabolizing bacteria

    Get PDF
    Dimethylsulfoniopropionate (DMSP) cleavage, yielding dimethyl sulfide (DMS) and acrylate, provides vital carbon sources to marine bacteria, is a key component of the global sulfur cycle and effects atmospheric chemistry and potentially climate. Acrylate and its metabolite acryloyl-CoA are toxic if allowed to accumulate within cells. Thus, organisms cleaving DMSP require effective systems for both the utilization and detoxification of acrylate. Here, we examine the mechanism of acrylate utilization and detoxification in Roseobacters. We propose propionate-CoA ligase (PrpE) and acryloyl-CoA reductase (AcuI) as the key enzymes involved and through structural and mutagenesis analyses, provide explanations of their catalytic mechanisms. In most cases, DMSP lyases and DMSP demethylases (DmdAs) have low substrate affinities, but AcuIs have very high substrate affinities, suggesting that an effective detoxification system for acylate catabolism exists in DMSP-catabolizing Roseobacters. This study provides insight on acrylate metabolism and detoxification and a possible explanation for the high Km values that have been noted for some DMSP lyases. Since acrylate/acryloyl-CoA is probably produced by other metabolism, and AcuI and PrpE are conserved in many organisms across all domains of life, the detoxification system is likely relevant to many metabolic processes and environments beyond DMSP catabolism
    corecore