55 research outputs found
Microwave observations of spinning dust emission in NGC6946
We report new cm-wave measurements at five frequencies between 15 and 18GHz
of the continuum emission from the reportedly anomalous "region 4" of the
nearby galaxy NGC6946. We find that the emission in this frequency range is
significantly in excess of that measured at 8.5GHz, but has a spectrum from
15-18GHz consistent with optically thin free-free emission from a compact HII
region. In combination with previously published data we fit four emission
models containing different continuum components using the Bayesian spectrum
analysis package radiospec. These fits show that, in combination with data at
other frequencies, a model with a spinning dust component is slightly preferred
to those that possess better-established emission mechanisms.Comment: submitted MNRA
Mass and pressure constraints on galaxy clusters from interferometric SZ observations
Following on our previous study of an analytic parametric model to describe
the baryonic and dark matter distributions in clusters of galaxies with
spherical symmetry, we perform an SZ analysis of a set of simulated clusters
and present their mass and pressure profiles. The simulated clusters span a
wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations
with the Arcminute Microkelvin Imager (AMI) are simulated through their
Sunyaev- Zel'dovich (SZ) effect. We assume that the dark matter density follows
a Navarro, Frenk and White (NFW) profile and that the gas pressure is described
by a generalised NFW (GNFW) profile. By numerically exploring the probability
distributions of the cluster parameters given simulated interferometric SZ data
in the context of Bayesian methods, we investigate the capability of this model
and analysis technique to return the simulated clusters input quantities. We
show that considering the mass and redshift dependency of the cluster halo
concentration parameter is crucial in obtaining an unbiased cluster mass
estimate and hence deriving the radial profiles of the enclosed total mass and
the gas pressure out to r200.Comment: 5 pages, 2 tables, 3 figure
An excess of emission in the dark cloud LDN 1111 with the Arcminute Microkelvin Imager
We present observations of the Lynds' dark nebula LDN 1111 made at microwave
frequencies between 14.6 and 17.2 GHz with the Arcminute Microkelvin Imager
(AMI). We find emission in this frequency band in excess of a thermal
free--free spectrum extrapolated from data at 1.4 GHz with matched uv-coverage.
This excess is > 15 sigma above the predicted emission. We fit the measured
spectrum using the spinning dust model of Drain & Lazarian (1998a) and find the
best fitting model parameters agree well with those derived from Scuba data for
this object by Visser et al. (2001).Comment: accepted MNRA
AMI observations of unmatched Planck ERCSC LFI sources at 15.75 GHz
The Planck Early Release Compact Source Catalogue includes 26 sources with no
obvious matches in other radio catalogues (of primarily extragalactic sources).
Here we present observations made with the Arcminute Microkelvin Imager Small
Array (AMI SA) at 15.75 GHz of the eight of the unmatched sources at
declination > +10 degrees. Of the eight, four are detected and are associated
with known objects. The other four are not detected with the AMI SA, and are
thought to be spurious.Comment: 6 pages, 5 figures, 4 table
Follow-up observations at 16 and 33 GHz of extragalactic sources from WMAP 3-year data: I - Spectral properties
We present follow-up observations of 97 point sources from the Wilkinson
Microwave Anisotropy Probe (WMAP) 3-year data, contained within the New
Extragalactic WMAP Point Source (NEWPS) catalogue between declinations of -4
and +60 degrees; the sources form a flux-density-limited sample complete to 1.1
Jy (approximately 5 sigma) at 33 GHz. Our observations were made at 16 GHz
using the Arcminute Microkelvin Imager (AMI) and at 33 GHz with the Very Small
Array (VSA). 94 of the sources have reliable, simultaneous -- typically a few
minutes apart -- observations with both telescopes. The spectra between 13.9
and 33.75 GHz are very different from those of bright sources at low frequency:
44 per cent have rising spectra (alpha < 0.0), where flux density is
proportional to frequency^-alpha, and 93 per cent have spectra with alpha <
0.5; the median spectral index is 0.04. For the brighter sources, the agreement
between VSA and WMAP 33-GHz flux densities averaged over sources is very good.
However, for the fainter sources, the VSA tends to measure lower values for the
flux densities than WMAP. We suggest that the main cause of this effect is
Eddington bias arising from variability.Comment: 12 pages, 13 figures, submitted to MNRA
New constraints on the Polarization of Anomalous Microwave Emission in nearby molecular clouds
Anomalous Microwave Emission (AME) has been previously studied in two
well-known molecular clouds and is thought to be due to electric dipole
radiation from small spinning dust grains. It is important to measure the
polarization properties of this radiation both for component separation in
future cosmic microwave background experiments and also to constrain dust
models. We have searched for linearly polarized radio emission associated with
the Ophiuchi and Perseus molecular clouds using {\it WMAP} 7-year data.
We found no significant polarization within an aperture of
diameter. The upper limits on the fractional polarization of spinning dust in
the Ophiuchi cloud are 1.7%, 1.6% and 2.6% (at 95% confidence level) at
K-, Ka- and Q-bands, respectively. In the Perseus cloud we derived upper limits
of 1.4%, 1.9% and 4.7%, at K-, Ka- and Q-bands, respectively; these are similar
to those found by L\'opez-Caraballo et al. If AME at high Galactic latitudes
has a similarly low level of polarization, this will simplify component
separation for CMB polarization measurements. We can also rule out single
domain magnetic dipole radiation as the dominant emission mechanism for the
20-40 GHz. The polarization levels are consistent with spinning dust models.Comment: Accepted in MNRAS as a letter - added extra sentence. 5 pages, 2
figures, 1 tabl
LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair
Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger
AMI Galactic Plane Survey at 16 GHz – I. Observing, mapping and source extraction
The Arcminute Microkelvin Imager (AMI) Galactic Plane Survey is a large-area survey of the outer Galactic plane to provide arcminute resolution images at milli-Jansky sensitivity in the centimetre-wave band. Here we present the ?rst data release of the survey, consisting of 868 deg2 of the Galactic plane, covering the area 76? 170? between latitudes of |b| 5?, at a central frequency of 15.75 GHz (1.9 cm). We describe in detail the drift-scan observations which have been used to construct the maps, including the techniques used for observing, mapping and source extraction, and summarize the properties of the ?nalized data sets. These observations constitute the most sensitive Galactic plane survey of large extent at centimetre-wave frequencies greater than 1.4 GHz
- …