32 research outputs found

    Structural review of the Vredefort dome

    Get PDF
    The structure of the older-than-3.2-Ga Archean basement and Archean-to-Precambrian sedimentary/volcanic rocks (3.07 to ca. 2.2 Ga) in the center of the Witwatersrand Basin to the southwest of Johannesburg (South Africa) is dominated by the ca. 2.0-Ga megascopic Vredefort 'Dome' structure. The effect of the 'Vredefort event' is demonstrably large and is evident within a northerly arc of about 100 km radius around the granitic core of the structure. Northerly asymmetric overturning of the strata is observed within the first 17 km (strata is horizontal in the south), followed by a 40-km-wide rim synclinorium. Fold and fault structures (normal, reverse, and strike-slip) are locally as well as regionally concentrically arranged with respect to the northern and western sides of the structure. The unusual category of brittle deformation, the so-called 'shock deformation', observed in the collar strata has attracted worldwide attention over the past two decades. These deformation phenomena include the presence of coesite and stishovite, mylonites, and pseudotachylites, cataclasis at a microscopic scale, and the ubiquitous development of multiply striated joint surfaces (which include shatter cones, orthogonal, curviplanar, and conjugate fractures). The macroscopic to microscopic deformation features have led to the formulation of various hypotheses to account for the origin of the Vredefort structure: (1) tectonic hypotheses--deep crustal shear model, doming and N-directed thrust fault model, fold interference model, and diapir model; (2) the exogenous bolide impact hypothesis; and (3) the endogenous cryptoexplosion model

    The pseudotachylites from the Vredefort structure and the Witwatersrand basin

    Get PDF
    Pseudotachylite (PT) from both the Sudbury structure in Ontario and the Vredefort Dome in South Africa have been widely cited as the result of shock (impact)-induced brecciation. In the scientific and popular literature PT has been described as shock melt or even as impact melt rock. In contrast, others have for years requested that a clarification of the definitions for PT and impact melt rock be pursued. We have suggested that, until that time when well-defined criteria for genetically different melt rock types (e.g., generated by impact or tectonic processes) will have been established, the term PT should only be used as a descriptive one and that, wherever genetic implications are discussed, other terms, such as impact melt (rock) or friction melt, should be applied. It is obvious that these suggestions are not only of value for the discussion of terrestrial melt rocks of controversial origin, but also apply to the characterization of melt veins in extraterrestrial materials. Important observations on Vredefort and Witwatersrand pseudotachylite are summarized

    A quasi-Hertzian stress field from an internal source: A possible working model for the Vredefort structure

    Get PDF
    The Vredefort structure is a large domal feature about 110 km southeast of Johannesburg, South Africa, situated within and almost central to the large intracratonic Witwatersrand Basin. This structure consists of an Archean core of ca. 45 km in diameter, consisting largely of granitic gneiss, surrounded by a collar of metasedimentary and metavolcanic supracrustal rocks of the Dominian Group, Witwatersrand and Ventersdorp Supergroups, and Transvaal Sequence. The interpretation of images of the gravity and magnetic fields over Vredefort has permitted the delineation of several important features of the structure and of its environment. The outline of the collar strata is a prominent feature of both the gravity and the magnetic fields. The Vredefort structure shares this distinctive geometry with other structures (e.g., Manicouagan, Decaturville, Sierra Madera) of debated impact origin. In all these, successively older strata with steep outward dips are encountered while traversing inward to the center of the structure. A further attribute of these structures is the shortening of the outcrop of a particular stratigraphic unit compared to the original perimeter of that unit. To account for the geometric attributes of the Vredefort structure a mechanical scheme is required where there is radial movement of horizontal strata toward, with uplift in, the center of the Vredefort structure. Two models can be proposed: (1) one in which there is a rapid rise and violent disruption of cover rocks in response to expansion of a fluid accumulation; and (2) one in which there is, in contrast, a nonexplosive, quasi-Hertzian stress field resulting from a diapiric process. Both models can accommodate the geometry and structural components of Vredefort

    The formation of micro diamonds in decompression cracks out of equilibrium controlled by the C:O:H ratio in the kimberlitic melt

    Get PDF
    Diamonds are supposed to be formed in the diamond window under high-pressure conditions due to the polymorph graphite/diamond phase transition. In this study we present for the first time, that natural diamonds can be formed by C:O:H bearing volatiles during the uplift of the kimberlitic melt in eclogites from the Roberts Victor mine, South Africa. Our results give evidence that the kimberlitic melt acts like a catalyst, and therefore the C:O:H ratio in the kimberlite changes through the uplift of the kimberlite permanently, caused by the formation of hydrous and carbonatitic minerals within the kimberlitic melt. This catalytic process leads to the growth of light carbon bearing molecules and under favorable thermodynamic, stoichiometric and kinetic conditions micro diamonds can be formed, even under lower pressure conditions outside of the diamond window. High-spatial-resolution synchrotron based FT-IR has been used to detect C:O:H-bearing volatiles around planar defect structures in garnet. In micro diamond bearing planar defect structures, a correlation between C:O:H-bearing volatiles could be identified whereas in micro diamond free planar defect structures no correlation of the different C:O:H containing volatiles is visible. The conclusions from our study proves that C:O:H-bearing volatiles, and their distribution pattern around the studied micro cracks, are suggestive of the formation of micro diamonds in natural eclogites

    The chronology and tectonic style of landscape evolution along the elevated Atlantic continental margin of South Africa resolved by joint apatite fission track and (U-Th-Sm)/He thermochronology

    Full text link
    corecore