295 research outputs found

    Appariement de contours 2D par analyse multirésolution hiérarchique de la déformation

    Get PDF
    Cet article présente un algorithme d'appariement de contour basé sur une analyse multirésolution de la courbure. L'appariement point à point est particulièrement intéressant pour l'analyse de la déformation puisqu'il fournit un champ de déformation complet entre deux contours. Le critère de courbure permet d'étudier des déformations importantes mais il est extrêmement sensible au choix de l'échelle de mesure. Nous résolvons ce problème par une approche hiérarchique multirésolution qui nous permet de tenir compte de tous les niveaux de résolution des contours avec le seul critère de courbure. Notre algorithme est basé sur une décomposition des contours dans la base de Fourier et un appariement par programmation dynamique

    Hydro-Mechanical Modelling of Multiphase Flow in Coalbed by Computational Homogenization

    Full text link
    peer reviewedA multiscale model is developed for the modelling of coalbed methane (CBM) production. CBM recovery is known to be a highly coupled and multiphase problem. The finite element square method is used to integrate a fracture-scale model in a multiscale scheme. This method consists to localize the macroscale deformation to the microscale, then resolve the boundary value problem on the microscale with finite elements, then homogenize the microscale stresses to compute macroscopic quantities, and finally resolve the boundary value problem on the macroscale with finite elements. This approach has the advantage that it does not require to write some constitutive laws at the macroscale but only at the REV-scale. The multiscale model is therefore appropriate for reservoir modelling. The model is developed and implemented in a finite element code and the simulation of a synthetic reservoir is considered

    Enhanced susceptibility of T lymphocytes to oxidative stress in the absence of the cellular prion protein.: PrPC and oxidative stress in T lymphocytes

    Get PDF
    International audienceThe cellular prion glycoprotein (PrP(C)) is ubiquitously expressed but its physiologic functions remain enigmatic, particularly in the immune system. Here, we demonstrate in vitro and in vivo that PrP(C) is involved in T lymphocytes response to oxidative stress. By monitoring the intracellular level of reduced glutathione, we show that PrP(-/-) thymocytes display a higher susceptibility to H(2)O(2) exposure than PrP(+/+) cells. Furthermore, we find that in mice fed with a restricted diet, a regimen known to increase the intracellular level of ROS, PrP(-/-) thymocytes are more sensitive to oxidative stress. PrP(C) function appears to be specific for oxidative stress, since no significant differences are observed between PrP(-/-) and PrP(+/+) mice exposed to other kinds of stress. We also show a marked evolution of the redox status of T cells throughout differentiation in the thymus. Taken together, our results clearly ascribe to PrP(C) a protective function in thymocytes against oxidative stress

    The ReproGenomics Viewer: an integrative cross-species toolbox for the reproductive science community.

    No full text
    International audienceWe report the development of the ReproGenomics Viewer (RGV), a multi-and cross-species working environment for the visualization, mining and comparison of published omics data sets for the reproductive science community. The system currently embeds 15 published data sets related to gametogenesis from nine model organisms. Data sets have been curated and conveniently organized into broad categories including biological topics, technologies, species and publications. RGV's modular design for both organisms and genomic tools enables users to upload and compare their data with that from the data sets embedded in the system in a cross-species manner. The RGV is freely available at http://rgv.genouest.org

    Multi-modal image fusion for small animal studies in in-line PET /3T MRI

    No full text
    Congrès sous l’égide de la Société Française de Génie Biologique et Médical (SFGBM).National audienceIn the framework of small animal multi-modal imaging, the current progression of the IMAPPI project is illustrated by the design of an in-line PET/MRI prototype, coupled to a dedicated multi-resolution registration method allowing the robust fusion of data coming from both modalities. The first results show a good alignment of the data from tumor imaging at the level of the abdomen

    A fully coupled hydro-mechanical model for the modeling of coalbed methane recovery

    Get PDF
    Most coal seams hold important quantities of methane which is recognized as a valuable energy resource. Coal reservoir is considered not conventional because methane is held adsorbed on the coal surface. Coal is naturally fractured, it is a dual-porosity system made of matrix blocks and cleats (i.e fractures). In general, cleats are initially water saturated with the hydrostatic pressure maintaining the gas adsorbed in the coal matrix. Production of coalbed methane (CBM) first requires the mobilization of water in the cleats to reduce the reservoir pressure. Changes of coal properties during methane production are a critical issue in coalbed methane recovery. Indeed, any change of the cleat network will likely translate into modifications of the reservoir permeability. This work consists in the formulation of a consistent hydro-mechanical model for the CBM production modeling. Due to the particular structure of coal, the model is based on a dual-continuum approach to enrich the macroscale with microscale considerations. Shape factors are employed to take into account the geometry of the matrix blocks in the mass exchange between matrix and fractures. The hydro-mechanical model is fully coupled. For example, it captures the sorption-induced volumetric strain or the dependence of permeability on fracture aperture, which evolves with the stress state. The model is implemented in the finite element code Lagamine and is used for the modeling of one production well. A synthetic reservoir and then a real production case are considered. To date, attention has focused on a series of parametric analyses that can highlight the influence of the production scenario or key parameters related to the reservoir

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
    corecore