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Abstract  

The cellular prion glycoprotein (PrP
C
) is ubiquitously expressed but its physiologic functions 

remain enigmatic, particularly in the immune system. Here, we demonstrate in vitro and in 

vivo that PrP
C
 is involved in T lymphocytes response to oxidative stress. By monitoring the 

intracellular level of reduced glutathione, we show that PrP
-/- 

thymocytes display a higher 

susceptibility to H2O2 exposure than PrP
+/+

 cells. Furthermore, we find that in mice fed with a 

restricted diet, a regimen known to increase the intracellular level of ROS, PrP
-/-

 thymocytes 

are more sensitive to oxidative stress. PrP
C
 function appears to be specific for oxidative stress, 

since no significant differences are observed between PrP
-/-

 and PrP
+/+

 mice exposed to other 

kinds of stress. We also show a marked evolution of the redox status of T cells throughout 

differentiation in the thymus. Taken together, our results clearly ascribe to PrP
C
 a protective 

function in thymocytes against oxidative stress.  

 

 

 

Key words:  

cellular prion protein 

T Lymphocytes 

oxidative stress 

redox balance 

thymus 



 

 

3 

INTRODUCTION 

 

PrP
C
 is a highly conserved GPI-anchored glycoprotein [1,2] whose true physiological function 

is still debated [3,4]. Mice lacking PrP
C
 are viable and display only minor abnormalities [5,6]. 

It has been proposed that due to its localization at the cell membrane, PrP
C
 could play a role 

in ligand uptake, cell adhesion or signal transduction [7-11]. Moreover, several groups have 

shown the ability of this protein to bind copper with high affinity [12-14], ascribing to PrP
C
 a 

role in copper homeostasis. Finally, there is increasing evidence that in the brain, PrP
C
 

participates in the resistance against oxidative stress [15-18]. It has been shown that neurons 

from PrP
-/-

 mice have an increased susceptibility to superoxide anion and hydrogen peroxide 

(H2O2) toxicity [19,20].  

Most studies about PrP
C
 are focused on the brain. However, the high expression of PrP

C
 is not 

restricted to the central nervous system [21,22] but is also observed in many non-neuronal 

tissues including muscles, heart, kidney, hematopoietic cells and cells of the immune system 

[23,24]. In the hematopoietic compartment, the level of PrP
C
 expression is highly variable 

from one cell type to another and even within a given lineage, depending on the maturation 

steps [25,26]. For example, it was observed that PrP
C
 is differentially expressed on 

developing thymocytes, suggesting a role of this protein in the regulation of T lymphocyte 

differentiation [25,27,28]. 

T cell differentiation in the thymus is a precisely orchestrated process characterized by 

successive steps which can be followed by the expression of the cell surface molecules CD4, 

CD8, CD25 and CD44 [29-31]. T lymphocyte differentiation begins as CD4
-
CD8

-
, double 

negative (DN) cells. This population is divided into four cell subpopulations based on the 

regulated expression of CD25 and CD44: CD44
+
CD25

-
 (DN1), CD44

+
CD25

+
 (DN2), CD44

-

CD25
+
 (DN3) and CD44

-
CD25

-
 (DN4). Then, DN4 thymocytes progress to CD4

+
CD8

+
 

double positive (DP) cells and express low levels of TCR. A fraction of the DP cells is 

positively selected to become either CD4
+
 or CD8

+
 single-positive (SP) cells, which finally 

exit the thymus and migrate to the periphery. This differentiation is highly influenced by 

microenvironment conditions. It is well known that the redox system and antioxidant enzymes 

have an effect on both cell signalization [32,33] and apoptosis mechanisms which occur 

during T cell differentiation in the thymus [33,34]. In vivo, it appears that antioxidant 

conditions disrupt immature thymocyte development. In thymic organ cultures, antioxidants 

selectively affect 
+
 thymocyte differentiation via their effects on NF-B [35] which plays a 
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crucial role in lymphocyte maturation [36]. Similarly, transgenic mice overexpressing Cu/Zn 

superoxide dismutase exhibit various immunological abnormalities, including an early thymic 

involution [37,38].  

 

We previously reported that over-expression of PrP
C
 in mice resulted in strong alterations at 

different stages of T cell differentiation in the thymus. These effects could be partially 

reversed in vivo by copper supplementation in the drinking water, which led us  to propose 

that the over-expression of PrP
C
,
 
by chelating copper, creates an antioxidant context that is not 

supportive for  T cell development [28]. In the present study, we investigated the function 

of the PrP
C
 protein in the thymic redox homeostasis. We first compared the response of PrP

-/- 

and WT thymocytes in culture to an oxidative stress using H2O2 exposure. Then, to analyze 

the effects of oxidative stress in vivo, mice were submitted to a restricted feeding schedule, 

known to increase the intracellular level of reactive oxygen species (ROS) [39]. Finally, to 

assign more precisely to PrP
C
 a role in the defense against oxidative stress, we carried out two 

other types of stress: mice received dexamethasone by IP injection or were submitted to 

gamma-irradiation. Altogether our results demonstrate that thymocytes from PrP
-/- 

mice are 

much more affected than their WT counterparts by both in vitro and in vivo oxidative stress. 

We therefore propose that PrP
C
 plays an important role in the protection of thymocytes from 

oxidative stress, extending to the thymus the role of PrP
C
 in the redox homeostasis previously 

described in the brain. 

 

MATERIALS AND METHODS 

 

Mice 

C57BL/6 mice were purchased from Charles River Laboratories (l’Arbresle, France). PrP
-/-

 

mice [40] on a mixed C57BL/6 / 129 background were obtained from the Centre de 

Distribution, Typage et Archivage animal facility (CNRS, Orléans, France). Both strains were 

maintained under specific pathogen-free conditions in the animal facility of the Commissariat 

à l’Energie Atomique-Grenoble (A38 185 01), in accordance with institutional guidelines.  

 

Cell culture and oxidative stress 

Thymocytes were isolated from 4- to 6-week-old C57BL/6 or PrP
-/-

 mice and cultured in 

RPMI 1640 medium supplemented with 10% FCS, 1 mM sodium pyruvate , 1% non essential 

amino acids, 50 µM -mercaptoethanol, 1% penicillin (100 U/ml), 1% streptomycin (100 
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µg/ml) (all from InVitrogen Life Technologies, Cergy Pontoise, France). Cells (3x10
6
/ml) 

were cultured in 24-wells plates (1 ml/well) at 37°C in humidified 5% CO2 in air. Oxidative 

stress was induced by addition to the cells of 200 µM H2O2 and incubation for the indicated 

period of time. Cell viability was determined at the end of the treatment by acridin 

orange/ethidium bromide staining under UV light. 

 

Flow cytometry analysis 

For the analysis of cell surface protein expression, single-cell suspensions of thymocytes 

(1x10
6
) were stained for 30 min at 4°C with conjugated antibodies in PBS containing 3% fetal 

calf serum and 0.16% sodium azide. The antibodies used for staining (anti CD4, anti CD8, 

anti CD25 and anti CD44) were all from BD Pharmingen (le Pont de Claix, France). Various 

combinations of these antibodies labeled with FITC (excitation 488 nm, emission 525 nm), 

PE (excitation 488 nm, emission 575 nm), APC (excitation 633 nm, emission 670 nm) and 

PE-Cy5 (excitation 488 nm, emission 760 nm) were used. Data acquisition and analysis were 

performed with a FacsCalibur flow cytometer equipped with CellQuest software (Becton 

Dickinson).  

 

Measurement of intracellular glutathione 

Monochlorobimane (mCB) is a thiol-reactive cell permeable reagent able to bind to the 

intracellular reduced glutathione (GSH) [41]. The resulting adduct is fluorescent. mCB was 

added to the cells as described [42]. Briefly, cells were washed twice with PBS and stained 

with 50 µM mCB (Molecular Probes, Interchim, Montluçon, France) in PBS for 5 min at 

37°C. After a further incubation for 5 min on ice, the cellular fluorescence was analyzed by 

flow cytometry under UV excitation, using a Moflo cytometer (Dako, Trappes, France). In 

these conditions the level of fluorescence intensity is directly correlated to the intracellular 

level of reduced glutathione. The numbers provided in Table 1 represent the mean 

fluorescence intensity ( s.d) of mCB staining in the different thymocyte populations. 

Because identical results were obtained in WT and PrP
-/-

 mice, results from these two groups 

of animals were grouped for statistical significance analysis (Student’s t test, SPSS Software 

ver 15.0) 

 

Measurement of glutathione reductase levels in thymocytes  

Assay of glutathione reductase (GRase) activity was adapted from Carlberg and Mannervik 

[43]. The principle is based on the measurement at 340 nm of NADPH consumption catalyzed 
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by GRase during the reduction of GSSH. Results were expressed as mean international units 

per gram of protein  s.d. of at least 3 experiments. Statistical significance was determined 

using Student’s t test. 

 

Copper dietary supplementation  

Supplemented C57BL/6 or PrP
-/-

 mice were given water containing 250 mg/L
 
CuSO4 and 50 

mg/L sucrose, whereas the control group received
 
only sucrose. The diet was maintained for 

five weeks and then the mice were sacrificed for analysis of the thymocytes. 

 

Restricted feeding experiment 

Mice were kept under a restricted diet consisting in the free access to food and water for only 

2 hours per day as described in [39]. After 7 days, diet was stopped and mice had again 

unlimited access to food and water. Throughout this experiment, 3 to 4 mice were tested 

every day for their ability to respond to the stress generated by the diet. For this purpose, mice 

were sacrificed and their thymi recovered. Total numbers of thymocytes were measured and 

cells were incubated with anti-CD4 and anti-CD8 antibodies for flow cytometry analysis 

 

Dexamethasone-mediated apoptosis 

Mice were subjected to two injections of dexamethasone (2 mg/kg; i.p.) separated by 24 

hours. They were killed 24 hours after the last injection and thymocytes were analyzed by 

FACS as described above. 

 

Gamma irradiation 

Mice were irradiated (6Gy) in the “Anémone/Bio” irradiator (
60

Co, 2 Gy/min) in the 

“Arc/Nucléart” facility at the CEA-Grenoble. Mice were sacrificed 24 hrs post irradiation. 

 

RESULTS 

 

Measurement of the intracellular redox steady state of T lymphocyte precursors  

Glutathione is implicated in the protection of cells from reactive oxygen species such as free 

radicals and peroxides: reduced glutathione (GSH) acts as a scavenger of ROS and is 

regenerated through transient formation of the oxidized form (GSSG). In order to evaluate the 

http://en.wikipedia.org/wiki/Reactive_oxygen_species
http://en.wikipedia.org/wiki/Free_radical
http://en.wikipedia.org/wiki/Free_radical
http://en.wikipedia.org/wiki/Free_radical
http://en.wikipedia.org/wiki/Peroxide
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redox state of thymocyte subpopulations, C57BL/6 and PrP
-/-

 thymocytes were labeled with 

anti-CD4, anti-CD8, anti-CD44, and anti-CD25 antibodies and the content in GSH of the 

different subpopulations was measured by the mCB assay, as described in Materials and 

Methods. We previously showed that T cell differentiation is normal in PrP
-/-

 mice [28]. 

Overall identical results were obtained by the mCB assay for both types of mice (Fig 1 and 

Table 1). As shown in Fig 1A for WT mice, the most immature thymocytes (DN1/DN2 cells) 

contained the highest level of GSH. These cells were uniformly mCB
bright

. The intensity of the 

staining then decreased as the cells progressed until the DN3 stages (p<0.001 when data from 

both types of mice are pooled) and DN4 (p<0.05 with DN3). For both types of mice (Fig 1A 

and 1B) there was a further reduction in the intracellular content in GSH when the developing 

thymocytes reached their DP stage (p<0.001 between DN4 and DP), whereas a slight increase 

is noted during the final maturation of thymocytes to the SP stage (p=0.003 between DP and 

SP CD4
+
 and p<0.001 between DP and SP CD8

+
). Interestingly, while the staining was 

homogeneous for the DN1/DN2, DN3, DP and SP CD4
+
 populations, the distribution of 

mCB
+
 DN4 cells was broader and likely corresponded to an intermediate between the staining 

level of their DN3 precursors and their DP progeny. This dichotomy could reflect the 

transitional nature of the DN4 population, as these cells cycle rapidly while they exit the DN 

compartment to become DP. Similarly, the staining of the SP CD8
+
 cells was biphasic: the 

vast majority of the cells contained low DP-like levels of GSH while a minor population 

exhibited a mCB staining intensity similar to that found in DN3. This last population could 

represent immature SP thymocytes, an intermediate population of cycling cells on their way 

to become DP. Altogether, these results show that there is a marked evolution of the redox 

status during normal thymocyte development in mice. The same level of mCB staining is 

obtained for a given thymocyte population in different mice. (Fig 1B and Table 1). 

Interestingly, this pattern of intracellular GSH was also found in mutant mice where T cell 

development is impaired because a lack of pre-TCR expression, pT
-/-

 mice and CD3
5/5

 

mice (data not shown), underscoring the regulated control of the redox state during thymocyte 

differentiation. 

 

Thymocytes from PrP-deficient mice are more susceptible to a H2O2 stress  

In order to extend our in vitro observations to an in vivo context and in order to evaluate 

whether PrP
C
 expression plays a role in the modification of the cellular level of GSH in 

thymocytes after an oxidative stress, PrP
-/-

 and WT cells were incubated with H2O2. Hydrogen 

peroxide crosses freely the membrane and induces in the cytoplasm the generation of the 
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highly reactive hydroxyl radical OH
.
[44]. Thymocytes from C57BL/6 or PrP

-/-
 mice were 

plated as described in materials and methods and incubated for 4 hours in the presence of 0.2 

mM H2O2. At this concentration, which was previously used to analyze the effect of stress on 

antigen presenting cells [45,46], the cellular viability was not affected (data not shown). In 

C57BL/6 thymocytes, this treatment resulted in a decrease in the percentage of cells positive 

for mCB staining (Fig 2A), i.e that do contain high levels of GSH. But this decrease was 

much more important in absence of PrP
C
 expression. The PrP

-/-
 mice used for these analyses 

are on a mixed C57BL/6 / 129 background. Experiments were repeated with mice that were 

backcrossed more than 10 times to C57BL/6 mice. Similar results were obtained (data not 

shown), showing that this effect was not due to a strain difference. Thus, in an oxidative stress 

situation, PrP
-/-

 thymocytes are less able to maintain their pool of GSH, showing a difference 

in the capacity of these cells to respond to H2O2 exposure.  

In PrP
-/-

 mice, neurons have also been shown to be over sensitive to H2O2 exposure. It was 

suggested that this effect resulted from a decrease in glutathione reductase (GRase) activity 

[20,47]. To determine whether the increased susceptibility to peroxide toxicity observed in 

PrP
-/-

 mice was linked to an altered GRase activity, we measured it in WT and PrP
-/-

 

thymocytes, before and after incubation with H2O2 (Fig 2B). In the absence of peroxide, 

GRase activity was unchanged in PrP
-/-

 thymocytes when compared to WT. This activity was 

significantly increased in PrP
-/-

 but not WT thymocytes in the presence of 0.2 mM H2O2. 

These results show that the increased susceptibility of PrP
C
-deficient thymocytes to H2O2 

exposure does not result from a reduced GRase activity as this activity was on the contrary 

increased in this context. This increase was however not sufficient to prevent the decrease of 

the GSH level in PrP
-/-

 thymocytes. In addition, these results show that the GRase activity is 

differentially regulated in neurons and thymocytes, 

Knowing that PrP
C
 binds copper and that this cation plays a crucial role in the regulation of 

the redox balance, we tried to restore, in mice lacking the PrP
C
 protein, a correct redox 

intracellular environment by supplementing their drinking water  with copper. The results of 

this copper supplementation are shown in Fig 3. There was no difference in the content in 

GSH between WT and PrP
-/-

 thymocytes when no stress was applied. Addition of copper did 

not change the GSH level. On the other hand, while the content of reduced glutathione after 

H2O2 treatment was not significantly modified in copper supplemented C57BL/6 as compared 

to non treated mice, copper addition allowed the PrP
-/-

 mice to limit the effects of the H2O2 

stress: the level of reduced glutathione was significantly increased and reached nearly that of 
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treated WT mice. This last result reinforces the hypothesis that PrP
C
 could contribute to the 

preservation of the redox homeostasis. 

Effect of a physiologic oxidative stress on mice 

In order to extend our in vitro observations to an in vivo context, we exposed thymocytes in 

their physiological environment to an oxidative stress. To this end, mice were kept under a 

restricted diet: free access to food and water was allowed only for two hours per day for seven 

days. This regimen has previously been shown to increase the intracellular level of ROS [39] 

and to induce thymocyte apoptosis [48,49]. We therefore compared C57BL/6 and PrP
-/-

 mice 

in their ability to response to this type of stress by evaluating, each day, the thymus cellularity 

and the distribution of thymocyte populations. As shown in Fig 4A, in treated C57BL/6 mice, 

thymic cellularity remained constant for the first 4 days of food restriction (between 216 x 10
6
 

and 197 x 10
6
 cells). Then it fell at day 6 to reach a minimum (30.10

6
 cells) one day after the 

end of the restriction period (day 8). By the second day after the return to a normal regimen 

(day 9), the number of thymocytes already began to increase (71 x 10
6
 cells). In treated PrP

-/-
 

mice, thymic cellularity was found to decrease already from the first day of the food 

restriction period (131 x 10
6
 versus 189 x 10

6
 cells). This decrease was strong throughout the 

treatment, so that on the 6
th

 day, PrP
-/-

 thymus contained only 12 x 10
6
 cells, compared to 85 x 

10
6
 cells in C57BL/6 mice. As for WT mice, this reduction in thymocytes number was 

prolonged after the end of the treatment: the first and the second days after the return to a 

normal diet, the thymus of the treated animals contained only about 2 x 10
6
 cells. It is only at 

day 11, four days after the end of the restriction period, that the number of thymocytes began 

to increase, whereas this trend was already present in WT mice at day 9. Thus, the loss of 

cellularity began earlier, was much more pronounced and needed a longer period to be 

reverted in absence of PrP
C 

expression. Altogether these results confirm that developing 

thymocytes are more sensitive to oxidative stress in the absence of PrP. 

In parallel, we investigated the consequences of this treatment on each thymocyte 

subpopulation. FACS analysis revealed that thymocytes at every stage of differentiation were 

affected. The absolute number of cells in each of the four main compartments (DN, DP, CD4 

and CD8) decreased after restricted feeding (Fig 4B). Two days after the end of the treatment, 

in C57BL/6 mice, the number of cells present in the DN, DP, SP CD4 and SP CD8 

compartments were only 25%, 10%, 30% and 48% of the numbers found in control mice, 

respectively. In PrP
-/-

 mice, the consequences of the applied regimen were clearly more 

severe: only 4.8%, 0.1%, 4% and 6.5% of the cells were left in the DN, DP, SP CD4 and SP 

CD8 compartments in treated mice, respectively. In addition, even though DP thymocytes are 
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the most affected cells in the thymus irrespective of PrP
C
 expression, in the absence of PrP

C
 

these cells became a hundred times more sensitive to the oxidative stress generated by food 

restriction (0.11% vs 10.12% of cells remaining in PrP-deficient and wt mice, respectively). 

Altogether, these results reveal a higher susceptibility of PrP
-/-

 mice to oxidative stress in 

vivo. 

 

Effect of non oxidative stress on PrP
-/-

 mice 

We then wanted to study whether the absence of PrP
C
 had also deleterious effects on 

developing thymocytes in mice confronted with other types of stress. To this purpose, mice 

were exposed to two different types of stress. First, C57BL/6 and PrP
-/-

 mice were injected 

with dexamethasone. This glucocorticoid hormone is known to induce thymocyte apoptosis 

[50]. C57BL/6 and PrP
-/-

 mice received two IP injections of dexamethasone (2 mg/kg) 

separated by 24 hours, then, 24h after the last injection, CD4
-
CD8

-
, CD4

+
CD8

+
, SP CD4

+
, and 

SP CD8
+
 subpopulations were analyzed by flow cytometry. As shown in Table 2, 

dexamethasone induced an important reduction of the percentage of DP in C57BL/6 and PrP
-/-

 

thymocytes. This reduction was nevertheless highly comparable between both types of mice. 

Thus, absence of PrP expression does not influence thymocyte response to dexamethasone 

injection in vivo. 

We then used gamma irradiation which is known to strongly affect thymocytes [51-53]. Both 

PrP
-/-

 and C57BL/6 mice were exposed to a single dose (6 Gy) of whole body 
60

Co irradiation. 

DP cells are known to be highly radio-sensitive and, accordingly the percentage of DP was 

strongly reduced after irradiation, irrespective of PrP
C
 expression (Table 2). It varied from 

84.11 ± 1.71% for un-irradiated C57BL/6 mice to 17.75 ± 4.69% after irradiation and from 

82.32 ± 1.76% to 27.58 ± 14.40% for PrP
-/-

 mice. We observed compensatory increases in the 

other subpopulations after irradiation, but no significant differences between PrP
-/-

 and WT 

mice. These results show that in vivo PrP
-/-

 thymocytes behave like wild-type cells when 

exposed to no oxidative stress. 

 

DISCUSSION 

 

In a previous report, we showed that over-expression of the PrP
C
 protein at the surface of 

thymocytes was at the origin of defects in the development of T cell precursors in the thymus, 

and that copper supplementation induced a partial restoration of T lymphocyte differentiation 

[28]. These results led us to propose that the over-expression of PrP
C 

increases copper 
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chelation and thus creates an antioxidant environment in the cells that interferes with a correct 

 T cell development. The aim of the present study was to determine whether in the absence 

of PrP
C
, thymocytes are more susceptible to oxidative stress and whether PrP

C
 could 

contribute to the response of thymocytes against oxidative stress. To this purpose we 

compared in vitro and in vivo the response of WT and PrP
-/-

 thymocytes exposed to different 

stress. Our results show that thymocytes from mice that do not express the PrP
C
 protein are 

less efficient in their capacity to respond to an oxidative stress as compared to WT mice, but 

behave like WT thymocytes after radiation exposure or dexamethasone treatment. 

Oxidative stress is the result of the imbalance between production and destruction of ROS, 

leading to modification of the intracellular redox state. This imbalance can result from 

exposure of the cells to an excess of oxidant species or from a cellular deficit in antioxidant 

molecules such as glutathione [44]. Reduced glutathione is critical for the prevention of lipid 

and protein oxidation and the detoxification of ROS. It is essential for the regulation of the 

redox balance. Thymocyte development and T lymphocyte activities are markedly influenced 

by environment conditions. For example exposure to ROS has been shown to impair TCR 

signaling [54] and T lymphocyte activation and functions [55-57]. Conversely, optimal 

proliferation and activation of mature lymphocytes require reducing conditions [55,58].  

Our results now show that each discrete thymocyte subpopulation is characterized by a 

specific level of reduced glutathione. The highest quantity of GSH is found in the more 

immature cells and it regularly decreases as the cells become more and more mature, to reach 

its lowest level in the DP/SP subpopulations. It would be interesting to determine whether this 

developmental regulation of the intracellular GSH is required for proper thymocyte 

development or is imposed onto developing thymocytes by their maturation process. This 

difference of redox state of the various T cell subpopulations may be used as a marker to 

characterize the progress in the differentiation pathway. 

Glutathione is only one of the components participating in the regulation of intracellular 

redox balance in thymocytes. By chelating copper, the PrP
C
 protein could also play a role in 

this process but it appears dispensable in normal conditions, as similar levels of GSH are 

found in C57BL/6 and PrP
-/-

 cells. However, when thymocytes are exposed to oxidative stress 

conditions, a marked difference between C57BL/6 and PrP
C
-deficient mice becomes evident: 

GSH is strongly diminished and/or not rapidly replenished in PrP
-/-

 thymocytes. In PrP
-/-

 

neurons, it has been shown that this effect was the result, at least in part, of the low 

glutathione reductase activity [20]. Obviously, this is not the case in lymphocytes, as we 

found a higher GRase activity in PrP
-/- 

thymocytes after the H2O2 stress. It seems that after 
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H2O2 exposure, these PrP-deficient thymocytes enhanced their GRase activity in an attempt to 

preserve a correct GSH pool but this increase in GRase activity cannot maintain/restore a 

normal level of intracellular GSH in PrP
-/-

 thymocytes. Thus, paradoxically, the absence of 

PrP
C
 results in a lower level of GSH and a greater GRase activity in response to oxidative 

stress, demonstrating the importance of the PrP
C
 protein in the regulation of the GSH pool and 

the redox homeostasis. 

 

Interestingly, we can note a difference within mice that have received a copper 

supplementation: for WT mice the content of GSH in thymocytes after exposure to H2O2 is 

not changed as compared to non supplemented mice, whereas addition of copper allows the 

cells from PrP
-/-

 mice to face the oxidative stress, having a GSH content much higher than 

thymocytes from mice that have not been treated with copper. This result strengthens the 

hypothesis that PrP
C
 could play a role in redox homeostasis. We can thus conclude that the 

function of the PrP
C
 protein is revealed under oxidation stress conditions in vitro. 

Similarly, in living mice, the loss of PrP
C
 is also correlated with an increased susceptibility to 

oxidative stress generated via food restriction. The decrease in total thymic cellularity is more 

pronounced and the effect lasts for a longer period for PrP
-/-

 mice as compared with WT mice. 

In both mice, food deprivation strongly affects DP cells but this effect is much more 

pronounced in the case of PrP
-/-

 mice. We propose that,
 
due to its capacity to bind copper,

 

PrP
C
 participates to the fine regulation of the redox balance and consequently contributes to 

the regulation of thymocyte differentiation. 

PrP
C
 has been shown to be implicated in many processes where redox regulation is involved: 

in particular, during antigen-driven interactions PrP
C
 appears to be mobilized at the immune 

synapse [59]. PrP
C
 is associated with lipid rafts and it has been well documented that cross-

linking of PrP
C
 on mature T lymphocytes leads to PrP

C
 capping in clusters also containing 

Thy-1 and molecules implicated in T cell activation, i.e., TCR/CD3, ZAP70, Fyn, Lck and 

LAT [60-62]. It has been recently reported that oxidative stress results in oxidation of the 

actin-remodelling protein cofilin [63]. Oxidation of this key integrator of T cell activation 

leads to impaired actin depolymerisation and results in T cell hyporesponsivness under stress 

conditions due to incomplete immune synapse formation[63]. Antibody-mediated ligation of 

PrP
C
 at the surface of T lymphocytes promotes NADPH oxidase activation and a transient 

accumulation of ROS which act as second messenger, through phosphorylation of MAPK-

ERK1/2 [10]. In this case ROS are no longer considered as responsible for an oxidative stress 

but rather as key actors of intracellular signalization [64]. The activation of ERK by NADPH 
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oxidase products, in response to PrP
C
 ligation, could allow the preservation of the redox status 

of the cell. Our results show that both in vivo and in vitro, the response of thymocytes to 

oxidative stress is altered in the absence of PrP
C
. Taking into account published data and our 

present study, we propose that in the absence of PrP
C
, the signaling pathway which leads to 

the phosphorylation of the ERK1/2 kinases, is disturbed, with no direct consequences in 

normal conditions but leading to the disruption of the oxidant/antioxidant balance in case of a 

redox stress.  

 

Our results underline the importance of the redox balance in the different steps of T cell 

differentiation. Moreover, by ex vivo and in vivo experiments, we have demonstrated that in 

the absence of PrP
C
, thymocytes are less able to face an oxidative stress and to maintain their 

intracellular GSH level. Altogether, our results show that PrP
C 

have a protective function 

against oxidative stress and in the preservation of the intracellular redox balance. 
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Table 1: reduced glutathione level in the different thymic subpopulations
a
. The results are 

expressed as mean fluorescence units ± s.d of monochlorobimane staining intensity (n=3) 

 

 DN1-DN2 DN3 DN4 DP CD4 CD8 

C57BL/6 ± s.d 3112 ± 80 1968 ± 41 2053 ± 108 629 ± 23 725 ± 57 883 ± 53 

PrP
-/-

 ± s.d 3125 ± 73 2077 ± 151 2150 ± 125 662 ± 42 760 ± 85 1003 ± 118 

 

a:
 the thymic subpopulations were defined as described in Figure 1 

 

 

 

 

 

Table 2: effect of dexamethasone and -irradiation on the different thymic subpopulations in 

PrP
-/-

 and C57BL/6 mice. n  5. 

 

Mice % DN ± s.d. % DP ± s.d. % CD4
+
 ± s.d. % CD8

+
 ± s.d. 

C57BL/6 control 3.50 ± 0.42 84.11 ± 1.71  7.67 ± 0.65 2.54 ± 0.49 

PrP
-/-

 control 3.36  ± 0.53 82.32  ± 1.76 8.61  ± 0.45 3.32  ± 0.77 

C57BL/6 + dexamethasone 16.01 ± 0.94 6.36 ± 0.80 29.44 ± 0.30 16.43 ± 1.00 

PrP
-/-

 + dexamethasone 12.24 ± 1.05 8.45 ± 3.28 30.88 ± 2.21 17.88 ± 1.23 

C57BL/6  6 Gy 20.39 ± 1.30 17.75 ± 4.69 43.41 ± 10.61 16.76 ± 3.28 

PrP
-/-

  6 Gy 17.87 ± 4.45 27.58 ± 14.40 40.21 ± 7.29 14.34 ± 3.01 
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Figure 1- Measurement of the intracellular reduced glutathione. A-Thymocytes from C57BL/6 mice were
labeled with anti-CD4, anti-CD8, anti-CD25 and anti-CD44 antibodies to define the different T cell subpopulations,, , p p ,
and then incubated with monochlorobimane to evaluate their redox state, as described in “Materials and methods”.
The data presented here are representative of four different experiments. B- Comparison of the level of GSH
between C57BL/6 (black histograms) and PrP-/- (grey line) thymocytes prepared and analyzed as in A. The data
shown here are representative of six different experiments.
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