9 research outputs found

    Effect of pH and salt bridges on structural assembly: Molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain

    Get PDF
    The SH3 domain of Eps8 was previously found to form an intertwined, domain-swapped dimer. We report here a monomeric structure of the EPS8 SH3 domain obtained from crystals grown at low pH, as well as an improved domain-swapped dimer structure at 1.8 Å resolution. In the domain-swapped dimer the asymmetric unit contains two "hybrid-monomers." In the low pH form there are two independently folded SH3 molecules per asymmetric unit. The formation of intermolecular salt bridges is thought to be the reason for the formation of the dimer. On the basis of the monomer SH3 structure, it is argued that Eps8 SH3 should, in principle, bind to peptides containing a PxxP motif. Recently it was reported that Eps8 SH3 binds to a peptide with a PxxDY motif. Because the "SH3 fold" is conserved, alternate binding sites may be possible for the PxxDY motif to bind. The strand exchange or domain swap occurs at the n-src loops because the n-src loops are flexible. The thermal b-factors also indicate the flexible nature of n-src loops and a possible handle for domain swap initiation. Despite the loop swapping, the typical SH3 fold in both forms is conserved structurally. The interface of the acidic form of SH3 is stabilized by a tetragonal network of water molecules above hydrophobic residues. The intertwined dimer interface is stabilized by hydrophobic and aromatic stacking interactions in the core and by hydrophilic interactions on the surface

    Functional and structural characterization of the integrase from the prototype foamy virus

    Get PDF
    Establishment of the stable provirus is an essential step in retroviral replication, orchestrated by integrase (IN), a virus-derived enzyme. Until now, available structural information was limited to the INs of human immunodeficiency virus type 1 (HIV-1), avian sarcoma virus (ASV) and their close orthologs from the Lentivirus and Alpharetrovirus genera. Here, we characterized the in vitro activity of the prototype foamy virus (PFV) IN from the Spumavirus genus and determined the three-dimensional structure of its catalytic core domain (CCD). Recombinant PFV IN displayed robust and almost exclusively concerted integration activity in vitro utilizing donor DNA substrates as short as 16 bp, underscoring its significance as a model for detailed structural studies. Comparison of the HIV-1, ASV and PFV CCD structures highlighted both conserved as well as unique structural features such as organization of the active site and the putative host factor binding face. Despite possessing very limited sequence identity to its HIV counterpart, PFV IN was sensitive to HIV IN strand transfer inhibitors, suggesting that this class of inhibitors target the most conserved features of retroviral IN-DNA complexes
    corecore