23 research outputs found

    Event shapes in e+e- annihilation and deep inelastic scattering

    Full text link
    This article reviews the status of event-shape studies in e+e- annihilation and DIS. It includes discussions of perturbative calculations, of various approaches to modelling hadronisation and of comparisons to data.Comment: Invited topical review for J.Phys.G; 40 pages; revised version corrects some nomenclatur

    Planet Sensitivity from Combined Ground- and Space-based Microlensing Observations

    Full text link
    To move one step forward toward a Galactic distribution of planets, we present the first planet sensitivity analysis for microlensing events with simultaneous observations from space and the ground. We present this analysis for two such events, OGLE-2014-BLG-0939 and OGLE-2014-BLG-0124, which both show substantial planet sensitivity even though neither of them reached high magnification. This suggests that an ensemble of low to moderate magnification events can also yield significant planet sensitivity and therefore probability to detect planets. The implications of our results to the ongoing and future space-based microlensing experiments to measure the Galactic distribution of planets are discussed.Comment: 10 pages, 5 figures, 1 table; ApJ in pres

    WISE/NEOWISE Observations of Comet 103P/Hartley 2

    Get PDF
    We report results based on mid-infrared photometry of comet 103P/Hartley 2 taken during 2010 May 4-13 (when the comet was at a heliocentric distance of 2.3 AU, and an observer distance of 2.0 AU) by the Wide-field Infrared Survey Explorer. Photometry of the coma at 22 μm and data from the University of Hawaii 2.2 m telescope obtained on 2010 May 22 provide constraints on the dust particle size distribution, d log n/d log m, yielding power-law slope values of alpha = –0.97 ± 0.10, steeper than that found for the inbound particle fluence during the Stardust encounter of comet 81P/Wild 2. The extracted nucleus signal at 12 μm is consistent with a body of average spherical radius of 0.6 ± 0.2 km (one standard deviation), assuming a beaming parameter of 1.2. The 4.6 μm band signal in excess of dust and nucleus reflected and thermal contributions may be attributed to carbon monoxide or carbon dioxide emission lines and provides limits and estimates of species production. Derived carbon dioxide coma production rates are 3.5(± 0.9) × 10^(24) molecules per second. Analyses of the trail signal present in the stacked image with an effective exposure time of 158.4 s yields optical-depth values near 9 × 10^(–10) at a delta mean anomaly of 0.2 deg trailing the comet nucleus, in both 12 and 22 μm bands. A minimum chi-squared analysis of the dust trail position yields a beta-parameter value of 1.0 × 10^(–4), consistent with a derived mean trail-grain diameter of 1.1/ρ cm for grains of ρ g cm^(–3) density. This leads to a total detected trail mass of at least 4 × 10^(10) ρ kg

    Fossil AGN jets as ultra high energy particle accelerators

    Full text link
    Remnants of AGN jets and their surrounding cocoons leave colossal magnetohydrodynamic (MHD) fossil structures storing total energies ~10^{60} erg. The original active galacic nucleus (AGN) may be dead but the fossil will retain its stable configuration resembling the reversed-field pinch (RFP) encountered in laboratory MHD experiments. In an RFP the longitudinal magnetic field changes direction at a critical distance from the axis, leading to magnetic re-connection there, and to slow decay of the large-scale RFP field. We show that this field decay induces large-scale electric fields which can accelerate cosmic rays with an E^{-2} power-law up to ultra-high energies with a cut-off depending on the fossil parameters. The cut-off is expected to be rigidity dependent, implying the observed composition would change from light to heavy close to the cut-off if one or two nearby AGN fossils dominate. Given that several percent of the universe's volume may house such slowly decaying structures, these fossils may even re-energize ultra-high energy cosmic rays from distant/old sources, offsetting the ``GZK-losses'' due to interactions with photons of the cosmic microwave background radiation and giving evidence of otherwise undetectable fossils. In this case the composition would remain light to the highest energies if distant sources or fossils dominated, but otherwise would be mixed. It is hoped the new generation of cosmic ray experiments such as the Pierre Auger Observatory and ultra-high energy neutrino telescopes such as ANITA and lunar Cherenkov experiments will clarify this.Comment: 11 pages, 6 figures, additional references and explanations. Accepted for publication in MNRA

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include
    corecore