270 research outputs found

    EFFECTS OF NH4CI INGESTION ON PHOSPHOCREATINE METABOLISM DURING MODERATE- AND HEAVY-INTENSITY PLANTAR-FLEXION EXERCISE

    Get PDF
    Eight male subjects performed moderate- and heavy-intensity plantar-flexion exercise in both a control (CON) and NH4CI ingestion (ACID) trial. Intracellular 11 metabolism was examined using P-magnetic resonance spectroscopy. During the middle and late stages of heavy-intensity exercise, ACID resulted in a lower (P\u3c0.05) intracellular pH (middle: ACID 6.63 vs. CON 6.70; late: ACID 6.64 vs. CON 6.70). Phosphocreatine [PCr] (P\u3c0.05) was lower in ACID during the early [ACID 18.14 vs. CON 20.40 mmol/1] and middle [ACID 14.12 vs. CON 16.73 mmol/1] stages of heavy- intensity exercise. ACID did not affect the magnitude of the PCr slow component [ACID 2.7 vs. CON 4.0 mmol/1] (P\u3e0.05). Fundamental phase PCr breakdown kinetics demonstrated greater amplitude (P\u3c0.05) during heavy-intensity exercise in ACID [ACID: 14.54 vs. CON: 11.31 mmol/1] with no difference in the time constant. In summary, NH4CI ingestion increased PCr breakdown during heavy-intensity exercise with no affect on the PCr slow component

    There Are No Nonresponders to Resistance-Type Exercise Training in Older Men and Women

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordOBJECTIVE: To assess the proposed prevalence of unresponsiveness of older men and women to augment lean body mass, muscle fiber size, muscle strength, and/or physical function following prolonged resistance-type exercise training. DESIGN/SETTING/PARTICIPANTS: A retrospective analysis of the adaptive response to 12 (n = 110) and 24 (n = 85) weeks of supervised resistance-type exercise training in older (>65 years) men and women. MEASUREMENTS: Lean body mass (DXA), type I and type II muscle fiber size (biopsy), leg strength (1-RM on leg press and leg extension), and physical function (chair-rise time) were assessed at baseline, and after 12 and 24 weeks of resistance-type exercise training. RESULTS: Lean body mass increased by 0.9 ± 0.1 kg (range: -3.3 to +5.4 kg; P < .001) from 0 to 12 weeks of training. From 0 to 24 weeks, lean body mass increased by 1.1 ± 0.2 kg (range: -1.8 to +9.2 kg; P < .001). Type I and II muscle fiber size increased by 324 ± 137 μm(2) (range: -4458 to +3386 μm(2); P = .021), and 701 ± 137 μm(2) (range: -4041 to +3904 μm(2); P < .001) from 0 to 12 weeks. From 0 to 24 weeks, type I and II muscle fiber size increased by 360 ± 157 μm(2) (range: -3531 to +3426 μm(2); P = .026) and 779 ± 161 μm(2) (range: -2728 to +3815 μm(2); P < .001). The 1-RM strength on the leg press and leg extension increased by 33 ± 2 kg (range: -36 to +87 kg; P < .001) and 20 ± 1 kg (range: -22 to +56 kg; P < .001) from 0 to 12 weeks. From 0 to 24 weeks, leg press and leg extension 1-RM increased by 50 ± 3 kg (range: -28 to +145 kg; P < .001) and 29 ± 2 kg (range: -19 to +60 kg; P < .001). Chair-rise time decreased by 1.3 ± 0.4 seconds (range: +21.6 to -12.5 seconds; P = .003) from 0 to 12 weeks. From 0 to 24 weeks, chair-rise time decreased by 2.3 ± 0.4 seconds (range: +10.5 to -23.0 seconds; P < .001). Nonresponsiveness was not apparent in any subject, as a positive adaptive response on at least one training outcome was apparent in every subject. CONCLUSIONS: A large heterogeneity was apparent in the adaptive response to prolonged resistance-type exercise training when changes in lean body mass, muscle fiber size, strength, and physical function were assessed in older men and women. The level of responsiveness was strongly affected by the duration of the exercise intervention, with more positive responses following more prolonged exercise training. We conclude that there are no nonresponders to the benefits of resistance-type exercise training on lean body mass, fiber size, strength, or function in the older population. Consequently, resistance-type exercise should be promoted without restriction to support healthy aging in the older population.This work was funded by TI Food and Nutrition, a public-private partnership on precompetitive research in food and nutrition

    Електродинамічні характеристики розподілено-зв'язаних діелектричних хвилеводів з екраном змінної провідності

    Get PDF
    Широке розповсюдження та використання, як окремих приладів так і елементної бази електроніки НВЧ, отримали хвилеводні системи із розподіленим зв‘язком. Найбільш відомими серед них є спрямовані відгалужувачі, хвилеводно-пучкові перетворювачі, елементи сумарнорізнецевих перетворювачів сигналів, пристрої на базі планарних лінз Люненберга. Тому питання оптимізації вже відомих та пошук нових способів керування міжхвилеводним розподіленим зв‘язком в таких системах є актуальними

    Human skeletal muscle disuse atrophy: effects on muscle protein synthesis, breakdown and insulin resistance- a qualitative review

    Get PDF
    The ever increasing burden of an ageing population and pandemic of metabolic syndrome worldwide demands further understanding of the modifiable risk factors in reducing disability and morbidity associated with these conditions. Disuse skeletal muscle atrophy (sometimes referred to as “simple” atrophy) and insulin resistance are ‘non-pathological’ events resulting from sedentary behaviour and periods of enforced immobilization e.g. due to fractures or elective orthopaedic surgery. Yet, the processes and drivers regulating disuse atrophy and insulin resistance and the associated molecular events remain unclear – especially in humans. The aim of this review is to present current knowledge of relationships between muscle protein turnover, insulin resistance and muscle atrophy during disuse, principally in humans. Immobilisation lowers fasted state muscle protein synthesis (MPS) and induces fed-state ‘anabolic resistance’. While a lack of dynamic measurements of muscle protein breakdown (MPB) precludes defining a definitive role for MPB in disuse atrophy, some proteolytic “marker” studies (e.g. MPB genes) suggest a potential early elevation. Immobilisation also induces muscle insulin resistance (IR). Moreover, the trajectory of muscle atrophy appears to be accelerated in persistent IR states (e.g. Type II diabetes), suggesting IR may contribute to muscle disuse atrophy under these conditions. Nonetheless, the role of differences in insulin sensitivity across distinct muscle groups and its effects on rates of atrophy remains unclear. Multifaceted time-course studies into the collective role of insulin resistance and muscle protein turnover in the setting of disuse muscle atrophy, in humans, are needed to facilitate the development of appropriate countermeasures and efficacious rehabilitation protocol

    Enriching a protein drink with leucine augments muscle protein synthesis after resistance exercise in young and older men

    Get PDF
    Maximizing anabolic responses to feeding and exercise is crucial for muscle maintenance and adaptation to exercise training. We hypothesized that enriching a protein drink with leucine would improve anabolic responses to resistance exercise (RE: 6×8 knee-extension repetitions at 75% of 1-RM) in both young and older adults. Groups (n=9) of young (24±6 y, BMI 23±2kg.m-2) and older men (70±5 y, BMI 25±2 kg.m-2) were randomized to either: (i) RE followed by Slim-Fast Optima (SFO 10 g PRO; 24 g CHO) with 4.2 g of leucine (LEU) or, (ii) RE+SFO with 4.2 g of alanine (ALA; isonitrogenous control). Muscle biopsies were taken before, immediately after, and 1, 2 and 4 h after RE and feeding. Muscle protein synthesis (MPS) was measured by incorporation of [1, 2-13C2] leucine into myofibrillar proteins and the phosphorylation of p70S6K1 by immunoblotting. In young men, both area under the curve (AUC; FSR 0-4 h P<0.05) and peak FSR (0.11 vs. 0.08%.h.-1; P<0.05) were greater in the SFO+LEU than in the SFO+ALA group, after RE. Similarly, in older men, AUC analysis revealed that post-exercise anabolic responses were greater in the SFO+LEU than SFO+ALA group, after RE (AUC; FSR 0-4 h P<0.05). Irrespective of age, increases in p70S6K1 phosphorylation were evident in response to both SFO+LEU and SFO+ALA, although greater with leucine supplementation than alanine (fold-change 2.2 vs. 3.2; P<0.05), specifically in the older men. We conclude that addition of Leucine to a sub-maximal PRO bolus improves anabolic responses to RE in young and older men

    Fuel for the work required: a practical approach to amalgamating train-low paradigms for endurance athletes.

    Get PDF
    Using an amalgamation of previously studied "train-low" paradigms, we tested the effects of reduced carbohydrate (CHO) but high leucine availability on cell-signaling responses associated with exercise-induced regulation of mitochondrial biogenesis and muscle protein synthesis (MPS). In a repeated-measures crossover design, 11 males completed an exhaustive cycling protocol with high CHO availability before, during, and after exercise (HIGH) or alternatively, low CHO but high protein (leucine enriched) availability (LOW + LEU). Muscle glycogen was different (P < 0.05) pre-exercise (HIGH: 583 ± 158, LOW + LEU: 271 ± 85 mmol kg(-1) dw) but decreased (P < 0.05) to comparable levels at exhaustion (≈100 mmol kg(-1) dw). Despite differences (P < 0.05) in exercise capacity (HIGH: 158 ± 29, LOW + LEU: 100 ± 17 min), exercise induced (P < 0.05) comparable AMPKα2 (3-4-fold) activity, PGC-1α (13-fold), p53 (2-fold), Tfam (1.5-fold), SIRT1 (1.5-fold), Atrogin 1 (2-fold), and MuRF1 (5-fold) gene expression at 3 h post-exercise. Exhaustive exercise suppressed p70S6K activity to comparable levels immediately post-exercise (≈20 fmol min(-1) mg(-1)). Despite elevated leucine availability post-exercise, p70S6K activity remained suppressed (P < 0.05) 3 h post-exercise in LOW + LEU (28 ± 14 fmol min(-1) mg(-1)), whereas muscle glycogen resynthesis (40 mmol kg(-1) dw h(-1)) was associated with elevated (P < 0.05) p70S6K activity in HIGH (53 ± 30 fmol min(-1) mg(-1)). We conclude: (1) CHO restriction before and during exercise induces "work-efficient" mitochondrial-related cell signaling but; (2) post-exercise CHO and energy restriction maintains p70S6K activity at basal levels despite feeding leucine-enriched protein. Our data support the practical concept of "fuelling for the work required" as a potential strategy for which to amalgamate train-low paradigms into periodized training programs

    Protein type, protein dose, and age modulate dietary protein digestion and phenylalanine absorption kinetics and plasma phenylalanine availability in humans

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.BACKGROUND: Dietary protein ingestion stimulates muscle protein synthesis by providing amino acids to the muscle. The magnitude and duration of the postprandial increase in muscle protein synthesis rates are largely determined by dietary protein digestion and amino acid absorption kinetics. OBJECTIVE: We assessed the impact of protein type, protein dose, and age on dietary protein digestion and amino acid absorption kinetics in vivo in humans. METHODS: We included data from 18 randomized controlled trials with a total of 602 participants [age: 53 ± 23 y; BMI (kg/m2): 24.8 ± 3.3] who consumed various quantities of intrinsically l-[1-13C]-phenylalanine-labeled whey (n = 137), casein (n = 393), or milk (n = 72) protein and received intravenous infusions of l-[ring-2H5]-phenylalanine, which allowed us to assess protein digestion and phenylalanine absorption kinetics and the postprandial release of dietary protein-derived phenylalanine into the circulation. The effect of aging on these processes was assessed in a subset of 82 young (aged 22 ± 3 y) and 83 older (aged 71 ± 5 y) individuals. RESULTS: A total of 50% ± 14% of dietary protein-derived phenylalanine appeared in the circulation over a 5-h postprandial period. Casein ingestion resulted in a smaller (45% ± 11%), whey protein ingestion in an intermediate (57% ± 10%), and milk protein ingestion in a greater (65% ± 13%) fraction of dietary protein-derived phenylalanine appearing in the circulation (P < 0.001). The postprandial availability of dietary protein-derived phenylalanine in the circulation increased with the ingestion of greater protein doses (P < 0.05). Protein digestion and phenylalanine absorption kinetics were attenuated in older when compared with young individuals, with 45% ± 10% vs. 51% ± 14% of dietary protein-derived phenylalanine appearing in the circulation, respectively (P = 0.001). CONCLUSIONS: Protein type, protein dose, and age modulate dietary protein digestion and amino acid absorption kinetics and subsequent postprandial plasma amino acid availability in vivo in humans. These trials were registered at clinicaltrials.gov as NCT00557388, NCT00936039, NCT00991523, NCT01317511, NCT01473576, NCT01576848, NCT01578590, NCT01615276, NCT01680146, NCT01820975, NCT01986842, and NCT02596542, and at http://www.trialregister.nl as NTR3638, NTR3885, NTR4060, NTR4429, and NTR4492

    Human skeletal muscle is refractory to the anabolic effects of leucine during the postprandial muscle-full period in older men

    Get PDF
    Leucine modulates muscle protein synthesis (MPS), with potential to facilitate accrual/maintenance of muscle mass. Animal models suggest that leucine boluses shortly after meals may prolong MPS and delay onset of a “muscle-full” state. However, the effects of nutrient “top-ups” in humans, and particularly older adults where deficits exist, have not been explored. We determined the effects of a leucine top-up after essential amino acid (EAA) feeding on anabolic signaling, MPS, and muscle energy metabolism in older men. During 13C6-phenylalanine infusion, 16 men (∼70 years) consumed 15 g of EAA with (n=8, FED + LEU) or without (n=8, FED) 3 g of leucine top-up 90 min later. Repeated blood and muscle sampling permitted measurement of fasting and postprandial plasma EAA, insulin, anabolic signaling including mTOR complex 1 (mTORC1) substrates, cellular ATP and phosphorylocreatine, and MPS. Oral EAA achieved rapid insulinemia (12.5 iU·ml−1 25 min post-feed), essential aminoacidemia (3000 μM, 45–65 min post-feed), and activation of mTORC1 signaling. Leucine top-up prolonged plasma EAA (2800 μM, 135 min) and leucine availability (1050 μM, 135 min post-feed). Fasting FSRs of 0.046 and 0.056%·h-1 (FED and FED + LEU respectively) increased to 0.085 and 0.085%·h-1 90–180 min post-feed and returned to basal rates after 180 min in both groups. Phosphorylation of mTORC1 substrates returned to fasting levels 240 min post-feed in both groups. Feeding had limited effect on muscle elongation factor 2 (eEF2) phosphorylation. We demonstrate the refractoriness of muscle to nutrient-led anabolic stimulation in the postprandial period; thus, leucine supplements should be taken outside of meals, or with meals containing suboptimal protein in terms of either amount or EAA composition

    4-Nonylphenol induces autophagy and attenuates mTOR-p70S6K/4EBP1 signaling by modulating AMPK activation in Sertoli cells

    Get PDF
    The estrogenic chemical 4-nonylphenol (NP) is known to impair testicular devolopment and spermatogenesis in rodents. The objective of this study was to explore the effects of NP on autophagy induction and AMPK-mTOR signaling pathway in Sertoli cells (SCs), which are the “nursemaid cells” for meiosis of spermatocytes. In this study we exposed 7-week-old male rats to NP by intra-peritoneal injection at 0, 20, 50 or 100 mg/kg body weight/2 days for 20 consecutive days. Our results showed that exposure to NP dose-dependently induces the formation of autophagosomes in SCs, increases the expression of Beclin-1, the conversion of LC3-I to LC3-II and the mRNA expression of Atg3, Atg5, Atg7 and Atg12 in testis, and these effects are concomitant with the activation of AMPK, and the suppression of TSC2-mTOR-p70S6K/4EBP1 signaling cascade in testis. Furthermore, 10 µM Compound C or AMPKα1 siRNA pre-treatment effectively attenuated autophagy and reversed AMPK-mTOR-p70S6K/4EBP1 signaling in NP-treated SCs. Co-treatment with 1 mM AICAR remarkably strengthened NP-induced autophagy and mTOR inhibition in SCs. Together, these data suggest that NP stimulates Sertoli cell autophagy and inhibits mTOR-p70S6K/4EBP1 activity through AMPK activation, which is the potential mechanism responsible for the regulation of testis function and differentiation following NP exposure

    Effects of an amylopectin and chromium complex on the anabolic response to a suboptimal dose of whey protein

    Get PDF
    Background Previous research has demonstrated the permissive effect of insulin on muscle protein kinetics, and the enhanced insulin sensitizing effect of chromium. In the presence of adequate whole protein and/or essential amino acids (EAA), insulin has a stimulatory effect on muscle protein synthesis, whereas in conditions of lower blood EAA concentrations, insulin has an inhibitory effect on protein breakdown. In this study, we determined the effect of an amylopectin/chromium (ACr) complex on changes in plasma concentrations of EAA, insulin, glucose, and the fractional rate of muscle protein synthesis (FSR). Methods Using a double-blind, cross-over design, ten subjects (six men, four women) consumed 6 g whey protein + 2 g of the amylopectin-chromium complex (WPACr) or 6 g whey protein (WP) after an overnight fast. FSR was measured using a primed, continuous infusion of ring-d5-phenylalanine with serial muscle biopsies performed at 2, 4, and 8 h. Plasma EAA and insulin were assayed by ion-exchange chromatography and ELISA, respectively. After the biopsy at 4 h, subjects ingested their respective supplement, completed eight sets of bilateral isotonic leg extensions at 80% of their estimated 1-RM, and a final biopsy was obtained 4 h later. Results Both trials increased EAA similarly, with peak levels noted 30 min after ingestion. Insulin tended (p = 0.09) to be higher in the WPACr trial. Paired samples t-tests using baseline and 4-h post-ingestion FSR data separately for each group revealed significant increases in the WPACr group (+0.0197%/h, p = 0.0004) and no difference in the WP group (+0.01215%/hr, p = 0.23). Independent t-tests confirmed significant (p = 0.045) differences in post-treatment FSR between trials. Conclusions These data indicate that the addition of ACr to a 6 g dose of whey protein (WPACr) increases the FSR response beyond what is seen with a suboptimal dose of whey protein alone
    corecore