29 research outputs found

    Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010

    Get PDF
    Recent special reports on climate extremes have shown evidences of changes in the patterns of climate extremes at global, regional and local scales. Understanding the characteristics of climate extremes at regional and local levels is critical not only for the development of preparedness and early warning systems, but is also fundamental in the development of any adaptation strategies. There is still very limited knowledge regarding the past, present and future patterns of climate extremes in the Greater Horn of Africa (GHA). This study, which was supported by the World Bank Global Facility for Disaster Reduction and Recovery (WB-GFDRR) and implemented by the World Meteorological Organization, was organized in terms of three workshops with three main objectives; (1) analysis of daily rainfall and temperature extremes for ten countries in the GHA region using observed in situ data running from 1971 to 2006, (2) assessing whether the United Kingdom Met-office and Hadley centre Providing REgional Climates for Impact Studies (UK-PRECIS) modelling system can provide realistic representation of the past and present climate extremes as observed by available in situ data, and (3) studying the future regional climate extremes under different scenarios to further assess the expected changes in climate extremes.This paper, therefore, uses the outputs of these workshops and also includes post-workshop analyses to assess the changes of climate extremes within the GHA. The results showed a significant decrease in total precipitation in wet days greater than 1mm and increasing warm extremes, particularly at night, while cold extremes are decreasing. Considering a combination of geophysical models and satellite gravimetry observations from the Gravity Recovery and Climate Experiment (GRACE) mission in the frame of GRACE daily Kalman-smoothing models, for the years 2002 to 2010, we explored a decline in total water storage variations over the GHA

    Mesodermal fate decisions of a stem cell: the Wnt switch

    Get PDF
    Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis

    Townes-Brocks syndrome: twenty novel SALL1 mutations in sporadic and familial cases and refinement of the SALL1 hot spot region

    No full text
    Townes-Brocks syndrome (TBS) is an autosomal dominant malformation syndrome characterized by renal, anal, ear, and thumb anomalies caused by SALL1 mutations. To date, 36 SALL1 mutations have been described in TBS patients. All but three of those, namely p.R276X, p.S372X, and c.1404dupG, have been found only in single families thereby preventing phenotype-genotype correlations. Here we present 20 novel mutations (12 short deletions, five short duplications, three nonsense mutations) in 20 unrelated families. We delineate the phenotypes and report previously unknown ocular manifestations, i.e. congenital cataracts with unilateral microphthalmia. We show that 46 out of the now 56 SALL1 mutations are located between the coding regions for the glutamine-rich domain mediating SALL protein interactions and 65 bp 3\u27 of the coding region for the first double zinc finger domain, narrowing the SALL1 mutational hotspot region to a stretch of 802 bp within exon 2. Of note, only two SALL1 mutations would result in truncated proteins without the glutamine-rich domain, one of which is reported here. The latter is associated with anal, ear, hand, and renal manifestations, indicating that the glutamine-rich domain is not required for typical TBS
    corecore