37 research outputs found

    The aetiology of infectious intestinal disease in the community in Malta

    Get PDF
    Routine sources of data provide limited information on aetiological agents causing infectious intestinal disease (IID) in the community. A retrospective, age-stratified, cross-sectional, telephone study at community level was performed whereby identified cases were asked to submit stools for analysis. Of a total of 3504 persons who participated, 99 respondents were suffering from IID. Of these, 37.4% (n=37) cases submitted stools for analysis. These samples were analysed for bacteria (Salmonella, Campylobacter, Escherichia coli, Shigella), protozoa and viruses (rotavirus, norovirus). Salmonella goldcoast was identified in 2.7% (n=1 of 37 tested) of cases, rotavirus in 10% (n=3 of 30 tested) of cases and norovirus in 20% (n=6 of 30 tested) of cases. This study describes norovirus being the commonest aetiological cause of IID in the community of Malta, which along with the data from the national surveillance system is of value in planning policies for the control of infectious intestinal disease.peer-reviewe

    Potential Sea Level Rise Inundation in the Mediterranean: From Susceptibility Assessment to Risk Scenarios for Policy Action

    Get PDF
    Coastal ecosystems and anthropic activities are prone to be affected by the negative impact of marine-related processes induced by climate change, such as erosion, flooding and permanent inundation. Studies aiming at defining potential risk scenarios represent a valuable tool for the identification of the most suitable coastal adaptation measures. After outlining sea level rise implications at the Mediterranean scale, this paper deals with inundation risk scenarios for the years 2050 and 2100 for the north-eastern sector of the Island of Gozo (Malta), central Mediterranean Sea. The analysis, carried out by applying an index-based procedure, firstly required the evaluation of the susceptibility to inundation of the investigated coastal stretch under different sea level projections. Then, the spatial combination of inundation susceptibility with the exposure and vulnerability of the area allowed identification of the most critical sectors in terms of coastal risk. The results of the analysis showed that, under the worst-case climate scenarios, 5.5% and 8.1% of the investigated coastal sector are prone to very high inundation risk (Class R4) in 2050 and 2100, respectively. In particular, the bays of Ramla and Marsalforn, which are characterized by significant economic and touristic activities, were found to be the sites where the expected impacts of future sea level rise will be higher if no management strategy and adaptation action are taken in the near future

    The Power of Action Plots: Unveiling Reaction Selectivity of Light‐Stabilized Dynamic Covalent Chemistry

    Get PDF
    Exploiting the optimum wavelength of reactivity for efficient photochemical reactions has been well-established based on the development of photochemical action plots. We herein demonstrate the power of such action plots by a remarkable example of the wavelength-resolved photochemistry of two triazolinedione (TAD) substrates, i.e., aliphatic and aromatic substituted, that exhibit near identical absorption spectra yet possess vastly disparate photoreactivity. We present our findings in carefully recorded action plots, from which reaction selectivity is identified. The profound difference in photoreactivity is exploited by designing a ‘hybrid’ bisfunctional TAD molecule, enabling the formation of a dual-gated reaction manifold that demonstrates the exceptional and site-selective (photo)chemical behavior of both TAD substrates within a single small molecule

    3D Printed Microstructures Erasable by Darkness

    Get PDF
    To advance the applications of direct laser writing (DLW), adaptability of the printed structure is critical, prompting a shift toward printing structures that are comprised of different materials, and/or can be partially or fully erased on demand. However, most structures that contain these features are often printed by complex processes or require harsh developing techniques. Herein, a unique photoresist for DLW is introduced that is capable of printing 3D microstructures that can be erased by exposure to darkness. Specifically, microstructures based on light-stabilized dynamic materials are fabricated that remain stable when continously irradiated with green light, but degrade once the light source is switched off. The degradation and light stabilization properties of the printed materials are analyzed in-depth by time-lapse scanning electron microscopy. It is demonstrated that these resists can be used to impart responsive behavior onto the printed structure, and –critically– as a temporary locking mechanism to control the release of moving structural features

    Two Functions from a Single Photoresist: Tuning Microstructure Degradability from Light‐Stabilized Dynamic Materials

    Get PDF
    A photoresist—based on a light-stabilized dynamic material driven by an out-of-equilibrium photo-Diels–Alder reaction of triazolinediones with naphthalenes—whose ability to intrinsically degrade postprinting can be tuned by a simple adjustment of laser intensity during 3D laser lithography is introduced. The resist\u27s ability to form stable networks under green light irradiation that degrade in the dark is transformed into a tunable degradable 3D printing material platform. In-depth characterization of the printed microstructures via atomic force microscopy before and during degradation reveals the high dependency of the final structures’ properties on the writing parameters. Upon identifying the ideal writing parameters and their effect on the network structure, it is possible to selectively toggle between stable and fully degradable structures. This simplifies the direct laser writing manufacturing process of multifunctional materials significantly, which typically requires the use of separate resists and consecutive writing efforts to achieve degradable and nondegradable material sections

    The 4.2 ka event and the end of the Maltese “Temple Period”

    Get PDF
    The small size and relatively challenging environmental conditions of the semi-isolated Maltese archipelago mean that the area offers an important case study of societal change and human-environment interactions. Following an initial phase of Neolithic settlement, the “Temple Period” in Malta began ∌5.8 thousand years ago (ka), and came to a seemingly abrupt end ∌4.3 ka, and was followed by Bronze Age societies with radically different material culture. Various ideas concerning the reasons for the end of the Temple Period have been expressed. These range from climate change, to invasion, to social conflict resulting from the development of a powerful “priesthood.” Here, we explore the idea that the end of the Temple Period relates to the 4.2 ka event. The 4.2 ka event has been linked with several examples of significant societal change around the Mediterranean, such as the end of the Old Kingdom in Egypt, yet its character and relevance have been debated. The Maltese example offers a fascinating case study for understanding issues such as chronological uncertainty, disentangling cause and effect when several different processes are involved, and the role of abrupt environmental change in impacting human societies. Ultimately, it is suggested that the 4.2ka event may have played a role in the end of the Temple Period, but that other factors seemingly played a large, and possibly predominant, role. As well as our chronological modelling indicating the decline of Temple Period society in the centuries before the 4.2 ka event, we highlight the possible significance of other factors such as a plague epidemic.peer-reviewe

    Significant increase in azithromycin “resistance” and susceptibility to ceftriaxone and cefixime in Neisseria gonorrhoeae isolates in 26 European countries, 2019

    Get PDF
    Euro-GASP network: Claudia Eder, Sonja Pleininger, Steliana Huhlescu, Irith de Baetselier, BlaĆŸenka Hunjak, Tatjana Nemeth BlaĆŸić, Panagiota Maikanti-Charalampous, Despo Pieridou, Hana ZĂĄkouckĂĄ, Helena ĆœemličkovĂĄ, Steen Hoffmann, Susan Cowan, Rita Peetso, Jelena Viktorova, Ndeindo Ndeikoundam, Beatrice Bercot, Anu Patari Sampo, Vesa Kirjavainen, Susanne Buder, Klaus Jansen, Vivi Miriagou, Eszter Balla, MĂĄria DudĂĄs, GuĂ°rĂșn SigmundsdĂłttir, Lena Ros Asmundsdottir, Sinead Saab, Brendan Crowley, Anna Carannante, Paola Stefanelli, Gatis Pakarna, Violeta Mavcutko, Robert Cassar, Christopher Barbara, Francesca Vella, Alje Van Dam, Ineke Linde, Dominique Caugant, Hilde KlĂžvstad, Beata Mlynarczyk-Bonikowska, Maria-JosĂ© Borrego, Peter Pavlik, Irena Klavs, Tanja Kustec, Julio Vazquez, Asuncion Diaz, Raquel Abad Torreblanca, Inga Velicko, Magnus Unemo, Helen Fifer, Kate TempletonBackground: The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) performs annual sentinel surveillance of Neisseria gonorrhoeae susceptibility to therapeutically relevant antimicrobials across the European Union/European Economic Area (EU/EEA). We present the Euro-GASP results from 2019 (26 countries), linked to patient epidemiological data, and compared with data from previous years. Methods: Agar dilution and minimum inhibitory concentration (MIC) gradient strip methodologies were used to determine the antimicrobial susceptibility (using EUCAST clinical breakpoints, where available) of 3239 N. gonorrhoeae isolates from 26 countries across the EU/EEA. Significance of differences compared with Euro-GASP results in previous years was analysed using Z-test and the Pearson's χ2 test was used to assess significance of odds ratios for associations between patient epidemiological data and antimicrobial resistance. Results: European N. gonorrhoeae isolates collected between 2016 and 2019 displayed shifting MIC distributions for; ceftriaxone, with highly susceptible isolates increasing over time and occasional resistant isolates each year; cefixime, with highly-susceptible isolates becoming increasingly common; azithromycin, with a shift away from lower MICs towards higher MICs above the EUCAST epidemiological cut-off (ECOFF); and ciprofloxacin which is displaying a similar shift in MICs as observed for azithromycin. In 2019, two isolates displayed ceftriaxone resistance, but both isolates had MICs below the azithromycin ECOFF. Cefixime resistance (0.8%) was associated with patient sex, with resistance higher in females compared with male heterosexuals and men-who-have-sex-with-men (MSM). The number of countries reporting isolates with azithromycin MICs above the ECOFF increased from 76.9% (20/26) in 2016 to 92.3% (24/26) in 2019. Isolates with azithromycin MICs above the ECOFF (9.0%) were associated with pharyngeal infection sites. Following multivariable analysis, ciprofloxacin resistance remained associated with isolates from MSM and heterosexual males compared with females, the absence of a concurrent chlamydial infection, pharyngeal infection sites and patients ≄ 25 years of age. Conclusions: Resistance to ceftriaxone and cefixime remained uncommon in EU/EEA countries in 2019 with a significant decrease in cefixime resistance observed between 2016 and 2019. The significant increase in azithromycin "resistance" (azithromycin MICs above the ECOFF) threatens the effectiveness of the dual therapy (ceftriaxone + azithromycin), i.e., for ceftriaxone-resistant cases, currently recommended in many countries internationally and requires close monitoring.The study was funded by the European Centre for Disease Prevention and Control (Framework Contract No. ECDC/2017/004).info:eu-repo/semantics/publishedVersio

    Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

    Get PDF
    Non peer reviewe

    Photochemically Activated 3D Printing Inks: Current Status, Challenges, and Opportunities

    No full text
    3D printing with light is enabled by the photochemistry underpinning it. Without fine control over the ability to photochemically gate covalent bond formation by the light at a certain wavelength and intensity, advanced photoresists with functions spanning from on-demand degradability, adaptability, rapid printing speeds, and tailored functionality are impossible to design. Herein, recent advances in photoresist design for light-driven 3D printing applications are critically assessed, and an outlook of the outstanding challenges and opportunities is provided. This is achieved by classing the discussed photoresists in chemistries that function photoinitiator-free and those that require a photoinitiator to proceed. Such a taxonomy is based on the efficiency with which photons are able to generate covalent bonds, with each concept featuring distinct advantages and drawbacks.</p

    The Power of Action Plots: Unveiling Reaction Selectivity of Light-Stabilized Dynamic Covalent Chemistry

    No full text
    Exploiting the optimum wavelength of reactivity for efficient photochemical reactions has been well-established based on the development of photochemical action plots. We herein demonstrate the power of such action plots by a remarkable example of the wavelength-resolved photochemistry of two triazolinedione (TAD) substrates, i.e., aliphatic and aromatic substituted, that exhibit near identical absorption spectra yet possess vastly disparate photoreactivity. We present our findings in carefully recorded action plots, from which reaction selectivity is identified. The profound difference in photoreactivity is exploited by designing a ‘hybrid’ bisfunctional TAD molecule, enabling the formation of a dual-gated reaction manifold that demonstrates the exceptional and site-selective (photo)chemical behavior of both TAD substrates within a single small molecule.</p
    corecore