1,348 research outputs found

    A25 COLLAGEN TYPE II DEGRADATION AND FORMATION ASSESSED IN EX VIVO AND IN VIVO IN MODELS OF RA

    Get PDF

    AEMIP robust inversion using maximum phase angle Cole–Cole model re-parameterisation applied for HTEM survey over Lamego gold mine, Quadrilátero Ferrífero, MG, Brazil

    Get PDF
    This paper presents the results of airborne electromagnetic induced polarisation inversions using the Maximum Phase Angle (MPA) model for a helicopter time domain survey in the Quadril\ue1tero Ferr\uedfero area, Minas Gerais State (MG), Brazil. The inversions were conducted using a laterally constrained robust scheme, in order to decrease the difficulties to recover the multi-parametric model in a very ill-posed inverse problem, often found in induced polarisation studies. A set of six flight lines over the Lamego gold mine mineralised structure were inverted using the MPA re-parameterisation of the Cole\u2013Cole model and also the classical resistivity-only parameterisation, in order to understand the implications of the induced polarisation effect in the data and, consequently, in the resistivity model. A synthetic study was also conducted, seeking to understand what to expect from the resistivity-only inversions in the real data. According to borehole lithological data and previous structural knowledge from the literature, the results from the Maximum Phase Angle approach indicate an important chargeable body that seems to be in good agreement with a sulfide enriched carbonaceous/graphite and altered mafic unities, which are important markers for the gold mineralisation

    Effects of vertical distribution of soil inorganic nitrogen on root growth and subsequent nitrogen uptake by field vegetable crops

    Get PDF
    Information is needed about root growth and N uptake of crops under different soil conditions to increase nitrogen use efficiency in horticultural production. The purpose of this study was to investigate if differences in vertical distribution of soil nitrogen (Ninorg) affected root growth and N uptake of a variety of horticultural crops. Two field experiments were performed each over 2 years with shallow or deep placement of soil Ninorg obtained by management of cover crops. Vegetable crops of leek, potato, Chinese cabbage, beetroot, summer squash and white cabbage reached root depths of 0.5, 0.7, 1.3, 1.9, 1.9 and more than 2.4 m, respectively, at harvest, and showed rates of root depth penetration from 0.2 to 1.5 mm day)1 C)1. Shallow placement of soil Ninorg resulted in greater N uptake in the shallow-rooted leek and potato. Deep placement of soil Ninorg resulted in greater rates of root depth penetration in the deep-rooted Chinese cabbage, summer squash and white cabbage, which increased their depth by 0.2–0.4 m. The root frequency was decreased in shallow soil layers (white cabbage) and increased in deep soil layers (Chinese cabbage, summer squash and white cabbage). The influence of vertical distribution of soil Ninorg on root distribution and capacity for depletion of soil Ninorg was much less than the effect of inherent differences between species. Thus, knowledge about differences in root growth between species should be used when designing crop rotations with high N use efficiency

    OA phenotypes, rather than disease stage, drive structural progression – identification of structural progressors from 2 phase III randomized clinical studies with symptomatic knee OA

    Get PDF
    SummaryBackground/PurposeThe aim of this study was to identify key characteristics of disease progression through investigation of the association of radiographic progression over two years with baseline Joint Space Width (JSW), Kellgren–Lawrence (KL) grade, Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain, Joint Space Narrowing (JSN), and BMI.MethodsData from 2206 subjects (4390 knees) were combined for this post-hoc analysis of two randomized, double-blind, multi-center, placebo-controlled phase III trials (NCT00486434 and NCT00704847) that evaluated the efficacy and safety of 2-years treatment with oral salmon calcitonin of subjects with painful knee osteoarthritis (OA).ResultsThere was a clear positive and significant correlation between KL grade and WOMAC pain and total WOMAC, albeit the variance in pain measures was from min-to-max for all KL categories, emphasizing the heterogeneity of this patient population and pain perception. 32% of target knees did not progress, and only 51% had changes over minimum significant change (MSC). BMI, KL-Score and WOMAC pain was diagnostic, but only KL-score and pain had prognostic value, albeit pain in a non-linear manner.ConclusionThese data clearly describe significant associations between KL grade, JSW, pain and BMI in patients with symptomatic knee OA. KL grade, BMI and WOMAC pain were diagnostically associated with OA based on JSW but only KL-score and pain in a non-linier fashion was prognostic. 50% of patients did not progress more than MSC, highlighting the importance for identification of structural progressors and the phenotypes associated with these. These results suggest that disease phenotypes, rather than disease status, are responsible for disease progression

    Formation of an ordered phase in neutron star matter

    Get PDF
    In this work, we explore the possible formation of ordered phases in hadronic matter, related to the presence of hyperons at high densities. We analyze a microscopic mechanism which can lead to the crystallization of the hyperonic sector by the confinement of the hyperons on the nodes of a lattice. For this purpose, we introduce a simplified model of the hadronic plasma, in which the nuclear interaction between protons, neutrons and hyperons is mediated by meson fields. We find that, for some reasonable sets of values of the model parameters, such ordered phases are energetically favoured as density increases beyond a threshold value.Comment: 16 pages, 14 figures, submitted to NP

    Engineered nonlinear lattices

    Get PDF
    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system.Peer ReviewedPostprint (published version

    First-order cosmological phase transitions in the radiation dominated era

    Full text link
    We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in general the velocity of interfaces is non-relativistic due to the interaction with the plasma and the release of latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both stages. Some rough approximations are needed for the first stage, due to the non-trivial relations between the quantities that determine the variation of temperature with time. The second stage, instead, is considerably simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the equations can be solved exactly, including back-reaction on the expansion of the Universe. This treatment also applies to phase transitions mediated by impurities. We also investigate the relations between the different parameters that govern the characteristics of the phase transition and its cosmological consequences, and discuss the dependence of these parameters with the particle content of the theory.Comment: 38 pages, 3 figures; v2: Minor changes, references added; v3: several typos correcte

    Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}=2.76 TeV

    Get PDF
    The elliptic, v2v_2, triangular, v3v_3, and quadrangular, v4v_4, azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions and (anti-)protons in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range η<0.8|\eta|<0.8 at different collision centralities and as a function of transverse momentum, pTp_{\rm T}, out to pT=20p_{\rm T}=20 GeV/cc. The observed non-zero elliptic and triangular flow depends only weakly on transverse momentum for pT>8p_{\rm T}>8 GeV/cc. The small pTp_{\rm T} dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to pT=8p_{\rm T}=8 GeV/cc. The magnitude of the (anti-)proton elliptic and triangular flow is larger than that of pions out to at least pT=8p_{\rm T}=8 GeV/cc indicating that the particle type dependence persists out to high pTp_{\rm T}.Comment: 16 pages, 5 captioned figures, authors from page 11, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/186
    corecore