53 research outputs found

    Non-parametric identification of the mixed hazards model with interval-censored durations

    Get PDF
    Abstract: Econometric duration data are typically interval-censored, that is, not directly observed, but observed to fall within a known interval. Known non-parametric identification results for duration models with unobserved heterogeneity rely crucially on exact observation of durations at a continuous scale. Here, it is established that the mixed hazards model is non-parametrically identified through covariates that vary over time within durations as well as between observations when durations are interval-censored. The results hold for the mixed proportional hazards model as a special case. Keywords: duration analysis, interval-censoring, non-parametric identificatio

    Simulated maximum likelihood using tilted importance sampling

    Get PDF
    Abstract: This paper develops the important distinction between tilted and simple importance sampling as methods for simulating likelihood functions for use in simulated maximum likelihood. It is shown that tilted importance sampling removes a lower bound to simulation error for given importance sample size that is inherent in simulated maximum likelihood using simple importance sampling, the main method for simulating likelihood functions in the statistics literature. In addition, a new importance sampling technique, generalized Laplace importance sampling, easily combined with tilted importance sampling, is introduced. A number of applications and Monte Carlo experiments demonstrate the power and applicability of the methods. As an example, simulated maximum likelihood estimates from the infamous salamander mating model from McCullagh and Nelder (1989) can be found to easily satisfactory precision with an importance sample size of 100. Keywords: Simulation based estimation, importance sampling

    First detection of gas-phase ammonia in a planet-forming disk NH_3, N_2H^+, and H_2O in the disk around TW Hydrae

    Get PDF
    Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH_3, NH_4^+ and OCN^−. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods. Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH_3 in a protoplanetary disk around TW Hya. We used detailed models of the disk’s physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results. The NH_31_0–0_0 line is detected simultaneously with H_2O 1_(10)–1_(01) at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N_2H^+ 6–5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7−11.0 × 10^(21) g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2−16.0 × 10^(22) g, improving upon earlier literature estimates This corresponds to NH_3/H_2O abundance ratios of 7%−84%, assuming that water and ammonia are co-located. The inferred N_2H^+ gas mass of 4.9 × 10^(21) g agrees well with earlier literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2−17.0 × 10^(-11), 0.1−9.0 × 10^(-10) and 7.6 × 10^(-11) for NH_3, H_2O and N_2H^+ respectively. Conclusions. Only in the most compact and settled adopted configuration is the inferred NH_3/H_2O consistent with interstellar ices and solar system bodies of ~5%–10%; all other spatial distributions require additional gas-phase NH_3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies

    Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance

    Get PDF
    Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention

    Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance

    Get PDF
    Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention.info:eu-repo/semantics/publishedVersio

    First detection of gas-phase ammonia in a planet-forming disk. NH₃, N₂H⁺, and H₂O in the disk around TW Hydrae

    Get PDF
    Context. Nitrogen chemistry in protoplanetary disks and the freeze-out on dust particles is key for understanding the formation of nitrogen-bearing species in early solar system analogs. In dense cores, 10% to 20% of the nitrogen reservoir is locked up in ices such as NH3, NH4+ and OCN−. So far, ammonia has not been detected beyond the snowline in protoplanetary disks. Aims. We aim to find gas-phase ammonia in a protoplanetary disk and characterize its abundance with respect to water vapor. Methods. Using HIFI on the Herschel Space Observatory, we detected for the first time the ground-state rotational emission of ortho-NH3 in a protoplanetary disk around TW Hya. We used detailed models of the disk’s physical structure and the chemistry of ammonia and water to infer the amounts of gas-phase molecules of these species. We explored two radial distributions (extended across the disk and confined to <60 au like the millimeter-sized grains) and two vertical distributions (near the midplane and at intermediate heights above the midplane, where water is expected to photodesorb off icy grains) to describe the (unknown) location of the molecules. These distributions capture the effects of radial drift and vertical settling of ice-covered grains. Results. The NH310–00 line is detected simultaneously with H2O 110–101 at an antenna temperature of 15.3 mK in the Herschel beam; the same spectrum also contains the N2H+ 6–5 line with a strength of 18.1 mK. We use physical-chemical models to reproduce the fluxes and assume that water and ammonia are cospatial. We infer ammonia gas-phase masses of 0.7−11.0 × 1021 g, depending on the adopted spatial distribution, in line with previous literature estimates. For water, we infer gas-phase masses of 0.2−16.0 × 1022 g, improving upon earlier literature estimates This corresponds to NH3/H2O abundance ratios of 7%−84%, assuming that water and ammonia are co-located. The inferred N2H+ gas mass of 4.9 × 1021 g agrees well with earlier literature estimates that were based on lower excitation transitions. These masses correspond to a disk-averaged abundances of 0.2−17.0 × 10-11, 0.1−9.0 × 10-10 and 7.6 × 10-11 for NH3, H2O and N2H+ respectively. Conclusions. Only in the most compact and settled adopted configuration is the inferred NH3/H2O consistent with interstellar ices and solar system bodies of ~5%–10%; all other spatial distributions require additional gas-phase NH3 production mechanisms. Volatile release in the midplane may occur through collisions between icy bodies if the available surface for subsequent freeze-out is significantly reduced, for instance, through growth of small grains into pebbles or larger bodies

    Et annet perspektiv på Lomborg-saken

    Get PDF
    Artikkelen er gjengitt med tillatelse fra Samfunnsøkonomenes Forening.Lomborg-saken handler om forholdet mellom vitenskap og offentlig meningsdannelse. Kritikere av Lomborg hevder at han har skrevet en bok som gir et systematisk feilaktig bilde av virkeligheten. Videre skal han, ved å framstille boka som vitenskap, ha skadet både meningsdannelse og vitenskap. Den samme karakteristikken slår tilbake på Lomborgs hovedmotstandere. Kritikken av Lomborg bærer preg av å være feilaktig og dårlig begrunnet, og den gis autoritet ved å trekke på vitenskapelige institusjoner som tidsskrifter og den danske Forskningsstyrelsens Udvalg vedrørende videnskabelig uredelighed

    The effects of benefits on disability uptake

    Get PDF
    When using material from this publication, Statistics Norway shall be quoted as the source. Abstracts with downloadable Discussion Papers in PDF are available on the Internet: http://www.ssb.no.I study the effects of the level of disability benefits on disability uptake. Estimation of such effects is difficult because individual levels of disability pension benefits are closely related to individual characteristics that may also affect disability uptake through other mechanisms. I exploit variation in disability benefits related to individual characteristics only through birth cohort, due to special rules of the phasing in of the Norwegian National insurance scheme. These rules imply a nonlinear relationship between birth cohort and disability benefit level, which allows me to estimate the effects of benefits based on between-cohort differences, while controlling for age and year effects and hence implicitly linear trends in birth cohorts. The results show a statistically significant and strong positive effect of benefits on transitions to disability. The robustness of the results is studied in a number of tests based on sample partitions and other groups that are not exposed to the nonlinear relationship between birth cohort and disability benefit level.This paper is part of research financed by grant 168287/S20 from the Norwegian Research Council
    corecore