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Genomic analysis of sewage from 101
countries reveals global landscape of
antimicrobial resistance

Patrick Munk 1 , Christian Brinch 1, Frederik Duus Møller1,
Thomas N. Petersen1, Rene S. Hendriksen1, Anne Mette Seyfarth1,
Jette S. Kjeldgaard1, Christina Aaby Svendsen1, Bram van Bunnik 2,
Fanny Berglund 3, Global Sewage Surveillance Consortium*,
D. G. Joakim Larsson 3, Marion Koopmans 4, Mark Woolhouse 2 &
Frank M. Aarestrup 1

Antimicrobial resistance (AMR) is a major threat to global health. Under-
standing the emergence, evolution, and transmission of individual antibiotic
resistance genes (ARGs) is essential to develop sustainable strategies com-
batting this threat. Here, we use metagenomic sequencing to analyse ARGs in
757 sewage samples from 243 cities in 101 countries, collected from 2016 to
2019.Wefind regional patterns in resistomes, and thesediffer between subsets
corresponding to drug classes and are partly driven by taxonomic variation.
The genetic environments of 49 common ARGs are highly diverse, with most
common ARGs carried by multiple distinct genomic contexts globally and
sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific
patterns of dispersal limitation and global transmission. Our data furthermore
suggest certain geographies are more prone to transmission events and
should receive additional attention.

Theneed for global genomicpathogen surveillance andunderstanding
their global ecology, epidemiology and evolution is now larger than
ever. Most recently, this was exemplified by the COVID-19 pandemic,
which is the most devastating respiratory disease outbreak since the
1918 Spanish flu1. Rapid sequencing and sharing of genomic data has
enabled researchers from around the world to study the evolution and
spread of SARS-CoV-2 variants2–4.

Genomicmonitoring should not be reserved for acute pandemics.
It should be applied continuously also to endemic infections and silent
epidemics, including antimicrobial resistance (AMR), which grows
progressively worse and by some is predicted to result in an annual
death toll of 10 million by 20505. A large, recent study found that
bacterial AMR caused an additional 1.27 million deaths in 2019 in the
world, compared to a model scenario where all infections were

susceptible to treatment6. Understanding the epidemiology under-
lying the global and local emergence, selection and transmission of
AMR, and the individual antibiotic resistance genes (ARGs), is essential
to develop sustainable strategies combatting this threat.

We and others have previously proposed sewage as a convenient,
ethical AMRmonitoringmatrix andused it to determine theworldwide
diversity and abundance of ARGs using metagenomics7,8. Exactly
because sewage has the possibility to monitor both humans, their
animals, and their immediate environments, it offers a good cost-
effectivematrix to survey entire cities for theARGsfluctuating. Indeed,
it was recently shown that all the major clinical SARS-CoV-2 variants
can be found in sewage, but so can variants underrepresented in
clinical samples9. This could indicate the presence of alternative
reservoirs that aremissed by hospital surveillance, further highlighting
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the usefulness of sewage surveillance. Globally, more than two billion
people still lack clean water with faeces/sewage being the most com-
mon contaminant. Having a single connected ecosphere means sew-
age offers a simple way to survey both the ARG variants that we carry
and those we may soon clinically encounter.

There are several recent examples of ARGs that have emerged
clinically and swept globally through the environment, and human and
animal populations, including the New Delhi metallo-beta-lactamase
gene (blaNDM), blaCTX-M, and variants of the mobile colistin resistance
gene mcr10–12. Several examples of global transmission of specific
antimicrobial resistant clinical strains have also been documented,
such as the global transmission of Escherichia coli ST131, Salmonella
enterica serovar Typhi H-58 and separate MRSA lineages13–15. These
rapid, global transmission events support the Baas Becking hypothesis
stating everything is everywhere, but the environment selects16. It
therefore appears that drug usage-based selection, to a higher degree
than dispersal opportunities, has been the primary cause for the suc-
cessful spread of ARGs. The effects of drug-based selection on AMR
will then be further amplified by increased transmission, which is
linked to educational, economic and infrastructural factors among
others7,17.

The acceptance of the Baas Becking hypothesis has fostered the
general belief that ARGs can emerge virtually anywhere in the world
and be selected for given antimicrobial usage. This implies that, with
enhanced surveillance, early emergence events could be detected
prior to global spread. However, local predominance of specific,
mainly recently emerged ARGs within pathogenic bacterial strains in
individual countries and/or regions have been observed. An example is
found in clinical carbapenemase-producingEnterobacteriaceae (CPE)
isolates, where blaOXA-48 is the dominant gene in certain countries,
especially European, the blaKPC ismost frequent in the USA and blaNDM
alleles have become the dominant in India18–21. For cephalosporinases,
similar patterns are observed with FOX primarily being isolated in the
USA, whereas MOX and CMY are associated with Asia and European
livestock. This has been attributed to local selection or spread of
specific community- or nosocomial-derived clones butmay also reflect
a recent emergence that have not yet transmitted globally, perhaps
due to competition from phenotypically similar proteins. While such
geographically separated regions of transmission in culturable
pathogens may suggest future risk of global transmission, compara-
tively little is known about ARG transmission in complexmicrobiomes.
Wehavepreviously observedARGswith apparent regional restrictions,
which could not be attributed to antimicrobial usage but potentially to
host distribution or dispersal limitations7.

Recent studies are confirming that the microbiome composition
is mainly shaped by biotic and abiotic factors and not by geography
directly22,23. This is also seen in livestock, where strict diets are easier to
enforce and known to influence both the resulting microbiome and
resistome24,25. A limited number of microbial studies have however,
contested this universality theory and suggested dispersal limitations
based on observations of distance-decay relationships26–28.

Surveillance-solutions based on shotgun metagenomic
sequencing have the advantage of being relatively hypothesis-
agnostic. While AMR, is itself an extremely important monitoring
target, the possibility for additional monitoring of e.g., emergent
infectious disease agents, give the method significant additional
value compared to more targeted approaches. A clear example of
this, is the recent use of the Global Sewage metagenomics data for
monitoring of known human pathogenic viruses29. We therefore
hope this unique genomic dataset will also prove valuable to future
monitoring efforts.

In our previous study, we found that sample resistome profiles
cluster significantly according to geography. This finding was later
expanded upon with the observation that some bacterial species show
global phylogeographic signatures30.

In this study, we aim to provide a comprehensive sewage-based
overview of global ARG abundance, diversity, and genomic back-
grounds. We analyze and present comparable resistomes from most
countries on Earth, greatly expanding the global geographical cover-
age. Using flanking sequences around assembled ARGs, we wanted to
develop a better strategy for tracking the global transmission patterns
of individual ARGs, allowing better-resolved epidemiological insights.
Flank-based analyses has the potential to both quantify slow SNP
accumulation and dramatic context changes, potentially giving better
resolution than analysing individual ARGs.

The dataset containsmany ARG variants not in current databases,
variable gene syntenies, and global distribution patterns highlighting
the spatial and genomic components of AMR. For many urban envir-
onments, cities and even some countries, there was a complete lack of
microbiome and resistome data which we here seek to rectify. Our
analyses also reveal the problem of the historic under-sampling of
LMIC countries in current AMR monitoring efforts and suggest that
fighting AMR will need more locally tailored solutions.

Results
Summary of the dataset and reads
A total of 757 urban sewage samples were collected from 243 cities in
101 countries covering 7 major geographical regions (See Supple-
mentary Data 1). Paired-end sequencing reads from all the metagen-
omes were searched against known ARGs and the small ribosomal
subunit genes, common to all life. The average number of sequencing
fragments per samplewas 45.9million (range: 4.1–187.3M, SD: 15.4M),
yielding a total of 34.7 billion sequencing fragments spanning more
than 4 × 1012 nucleotides. An average of 0.05% of the reads were
assigned to ARGs. Across all datasets, 0.3% of the reads were assigned
to 16/18 S SSU rRNA, and of these, 96.8% and 2.9% were mapped to
bacteria and eukaryotes, respectively. Among sequencing fragments
assigned to vertebrates, species of fishes, primates, rodents, sheep,
poultry, and pig were the most abundant. Even though the 18 S rRNA
gene is not optimal for eukaryote species assignment, the composition
appeared consistent with humans, food animals and some common
sewer inhabitants.

Rarefaction of the reads mapping to bacterial Silva fragments
showed some samples starting to saturate in terms of found genera,
but there still being much uncovered diversity (Supplementary Fig. 1).

The average number of bacterial genera detected in samples was
969 (range: 419–1690. SD: 166). The genera with most assigned
sequencing fragments include Streptococcus, Acinetobacter, Klebsiella,
Pseudomonas and Acidovorax. Among the top twenty most common
genera, were also otherswithmembersof pathogenic potential suchas
Staphylococcus, Enterococcus and Neisseria.

Across the included samples, we found evidence of 557 different
ARGs. Thirteen of the ARGs were universal and found in every single
sample and includemph(E),msr(E), tet(A), tet(C), tet(W), sul1 and sul2.
A total of 127 ARGs were detected in at least half of the samples.
Sequencing depth seemed appropriate as many samples had pla-
teaued in rarefaction analyses and additional ResFinder hits resulted
only few extra ARGs (Supplementary Fig. 2).

Resistome alpha-diversity was highly variable between samples,
with high intra-region dispersion (Supplementary Fig. 3). Higher bac-
terial genus diversity was associated with higher ARG diversity
(Spearman’s rho: 0.45, p = 2.2−16), but higher estimated genus richness
was not associated with ARG richness (Spearman’s rho: 0.044,
p =0.28) (Supplementary Fig. 4).

Resistomes are geographically stable in time
The ARG abundances varied across sites and continents. The high-
est total ARG loads were on average observed in Sub-Saharan Africa,
which also includes The Gambia and Madagascar that interestingly
had the lowest ARG loads (Fig. 1a). There was generally a strong
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association between measured total ARG loads and the results of
our previous predictive model based on our 2016 samples alone
(Spearman’s rho: 0.56, p < 0.01, Supplementary Fig. 5)7. A few
interesting observations, however, stand out i.e., the previously
mentioned Gambia and Madagascar were among largest outliers,
with very low relative AMR loads, while other Sub-Saharan African
countries like Uganda and Zambia had higher ARG loads than
anticipated. Europe and North America appeared very homogenous
in terms of total ARG load, which could be expected due to their
similarity in World Bank Data that the model was built on. Africa,
The Middle East, and South America on the other hand, contained
both very high and very low values, with pronounced contrasts
between neighbouring countries in more variable regions.

Even though we did not receive samples from all the same sites in
each round, for 46 countries, there were samples from 2016, 2017, and
2018. Samples from 2017 and 2018 appeared particularly similar,
whereas, in 2016, values were generally higher in Africa and South
America (Supplementary Fig. 6). It is worth noting that we averaged
abundances over each year and 2016 contained only one major

sampling round, as opposed to both winter and summer rounds in
2017 and 2018, which could be influential.

Resistomes reflect world geography but differ by drug class
A hierarchical clustering of the sample resistomes, resulted in rela-
tively even two-split of the samples, with Europe, central Asia, and
North America heavily overrepresented in the right-hand cluster
(Fig. 2c). A heatmap of the most variable genes shows which of them
specifically are driving the two-split and further sub-clustering to
regions and even individual countries. For example, blaBEL-2 was pre-
valent in European and North American samples in the right-hand
cluster. This cephalosporinase is normally associated with P. aerugi-
nosa. Despite this, Pseudomonas had similar relative abundances in the
affected regions and the rest of the world.

The left cluster was associated with African and Middle Eastern
samples. Macrolide resistance genes such as erm(B), mef(A), msr(D),
msr(E) and mph(E) were more abundant in the right-hand cluster,
whereas the sulfonamide resistance gene sul1 had higher load in the
left cluster (Supplementary Fig. 7).
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A total of 16.2% resistome beta-diversity was explained by overall
regional grouping (permanova, p = 0.001, Fig. 2a). For the bacteriome
(assessed on genus level), a similar amount (11.9% of the variance) was
explained by regionality (permanova, p =0.001, Fig. 2b). Seasonality
(Q4 +Q1 vs Q2 +Q3) explained only 0.2% beta-diversity, which was
non-significant (permanova, p =0.051). When correcting for hemi-
sphere effects and changing season for samples with a negative lati-
tude, there was a significant, but only modest 1.8% explanatory effect
(permanova, p =0.001).

Bacterial composition seems to split the world’s region in roughly
two major groups, whereas the resistomes have more unique profiles
and have slightly more separate density peaks. Using Procrustes ana-
lyses, we found the bacteriome and resistomeswere closely associated
(0.871, p = 0.001, n = 757).

Geographical separations were also observed when analysing the
resistome at class-level, but importantly the patterns and separations
varied between drug classes (Fig. 3 and Supplementary Fig. 8). Some
regions were often, but not always, co-spatial, e.g., Europe and North
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America, South Asia, and East Asia, and sometimes regions split into
two distinct clusters, e.g., Latin America for Beta-lactams. Sub-Saharan
Africa was frequently distinct from North Africa and the Middle East.
Interestingly, for tetracyclines the ARGs separating the regions were
clearly grouped into those encoding efflux pumps and those encoding
16 S rRNA methylases.

Most common sewage ARGs are sometimes carried by plasmids
In the metagenomic assemblies, we found 55,391 ARGs. Across 5814
instances, 336 different ARGs were flanked with at least 1 Kb flanks
both up- and down-stream. The metagenomic scaffolds with flanks
were classified to bacteria in 92% of cases. 7% of the contigs could not
be assigned a superkingdom, and the remaining (<0.4%) were on
contigs assigned to either Archaea, Viruses (e.g., Klebsiella phages) or
Eukaryota (e.g., humans).

However, sincemany ARGs are known to associate with plasmids,
taxonomic scaffold assignment might not reflect the bacterial host
background in which they are currently sitting. To shed light on the

scopeof ARG-plasmid connection in sewage,we used a combinationof
three techniques to determine which contigs were plasmidic and what
their association to the ARGs were. See Supplementary Info for more
details on this result, but in summary 2102 of the contigs encoding 134
unique ARGs were identified as plasmidic, suggesting a large propor-
tion of ARGs are sometimes carried by plasmids in our samples (Sup-
plementary Data 2, Supplementary Fig. 9). Interestingly, plasmid
assignment frequency was much higher (41% vs 20%) among ARGs
observed on ten ormore contigs (Pearson’s Chi-squared test, n = 5814,
p = 4.3 × 10−16), which is evidence of just how important plasmids are in
global transmission.

Very few ARGs, like blaDHA-1 and qnrS1 always appeared to be
plasmid-associated, while others like lnu(D) and catQ were never
associated with plasmids, regardless of geography. However, most
common ARGs had mixed backgrounds with some instances of plas-
mid carriage (Supplementary Fig. 10).

ARGs in major geographical regions had similar frequency of
plasmid assignment (39%), varying between 35% and 44% per region,
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butwithin-regions therewere stillmajordifferencesbetween countries
(Supplementary Fig. 11). Sub-Saharan Africa had both the highest and
lowest values, from 55% in DR Congo to 26% in Burkina Faso and
Tanzania.

ARGs have wide host ranges in certain regions
When selecting just non-plasmid scaffolds with at least 1 kb up- and
down-stream flank, 2994 Kraken-assigned ARGs contigs remained for
further analysis. These were almost exclusively from Proteobacteria
and Firmicutes, Bacteroidetes and Actinobacteria.

The intersection of non-plasmid ARGs with three or more
assigned hosts and genera with three or more assigned ARGs can be
seen in Supplementary Fig. 12. Escherichiawas especially prominent in
thus subset, carrying genes often shared with other taxa.

A network graph of genus-ARG co-occurrence revealed a major
separation according to high-level taxonomy (Fig. 4). See Supple-
mentary Fig. 13 for a version with more annotation. Several proteo-
bacterial genera (purple circles) including Klebsiella, Escherichia,

Pseudomonas and were each host to many different ARGs. Some of
thesewere sharedwith other Proteobacteria (on edges tying the purple
cluster together), while many others were uniquely seen in their
respective genera (unconnected edges extending outside the cluster).

Firmicutes similarly formed a (blue) phylum-level cluster with the
Enterococcus, Staphylococcus and Streptococcus as genera with
important pathogenmembers. Also, Lactococcus and Exiguobacterium
were part of the gene-sharing cluster where they shared specifically
mef(A) and msr(D) with Enterococcus frequently.

Amongst the Gram-positive bacteria, Enterococcus was assigned
most different ARGs, andmainly shared these with other knownGram-
positive species, but also the Gram-negative genus Campylobacter.
This largely confirms observations from clinical isolates and suggests
that the current choices of Escherichia coli and Enterococcus faecalis as
indicator species for surveillance of AMR is appropriate31.

Interestingly, stratifying the dataset by geographical region, net-
works revealed that cross-phylum edges were more common in Sub-
Saharan Africa (Supplementary Fig. 14). This could indicate that some
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regional conditions facilitate cross-phylum transmission. In fact,
sharing of ARGs between Proteobacteria and Firmicutes seen in the
larger network, stems mostly from the inclusion of samples from this
region.

Very few ARGs remain stable and have fixed syntenies
Detailed analyses of ARG variant and gene flanking regions including
the exact gene synteny and the associationwith bacterial plasmid, taxa
geographical regions were conducted for the 49 most common ARGs.

A specific ARG and its neighbouring genes that share a host
organism and only transmit vertically through time will have the
same amount of time to diverge from their respective orthologs in a
cousin lineage. Therefore, one might expect to derive a similar
phylogenetic relationship of the ARG and the neighbouring genes. A
frequently mobilized ARG on the other hand, could be very similar
across all samples, even if its surrounding sequence varies con-
siderably. This is also the basis of gene synteny analysis, where the
surrounding genes’ order and identities are used to infer evolu-
tionary events. Frequent gene shuffling could create seemingly
different flanking regions for identical genes, whereas equal diver-
gence in gene and flank could suggest long-term stable association
and shared divergence.

To elucidate the diversity of genomic backgrounds of ARGs, we
clustered their immediate 1 Kb flanking regions based on sequence
k-mer dissimilarity, separately for each of the 49 most frequently
assembled ARGs (Supplementary Data 3). We carried out the same
analysis for the actual gene variant sequences (Supplementary Data 4).
The association between each ARGs’ dissimilarity matrix and its cor-
responding flank dissimilarity matrix (Supplementary Fig. 15), as well
as the gene synteny (Fig. 5) was determined.

When evaluating the 49 ARGs, it becomes obvious that no com-
mon evolutionary trajectory can account for ARGs generally. The
strength of association between gene and flank varied drastically
between ARGs. Some ARGs, like fosA, showed practically identical
clustering based on ARG and flank, suggesting long-term stable asso-
ciation and co-evolution (Supplementary Fig. 15b, d). Other ARGs, like
qnrS2, were almost identical across all samples, but had highly variable
flanks and was found in multiple bacterial taxa, and sometimes on
plasmids, indicating recent mobilization followed by frequent geno-
mic transfer and re-organization (Supplementary Fig. 15a, c).

msr(D) is an example of an ARG with many different genetic and
taxonomic contexts in awide geographic range (Fig. 5). InCluster 1 (C1)
for example, it appears to have been captured by the IS1595 transpo-
sase and spread across Africa, Europe, and North America, mostly
while in Exiguobacterium. C3 was also mostly Exiguobacterium-
assigned and was frequently observed with the chloramphenicol
resistance gene cat. These sequences were also seen in Lactococcus
and in a few instances in Enterococcus and Salmonella in Tanzania and
Nigeria. Interestingly, Tanzania contained highly identical contigs with
msr(D) scaffolds assigned to both Exiguobacterium, Salmonella and
Enterococcus. The presence of identical ARGs in identical immediate
contexts but in several different hosts suggest proximity to a trans-
mission hotspot, which warrants further investigation. Indeed, catQ
was also found in Tanzania in very similar local contexts but assigned
to variable hosts, supporting this concern.

C7 was exclusively in Lactococcus and mostly in Africa, the ARG
had somewhat variable upstream flanks, but consistently had the
macrolide resistance gene erm(C) downstream. C8 sequences were all
assigned to Leclercia and from diverse geographical regions.
C9 sequences were assigned to Exiguobacterium and in a highly iden-
tical European subset, it appeared to have spread to Enterococcus. In
summary, several sequence clusters, geography and taxonomy co-
occurred, suggesting geographical selection of specific bacterial taxa
in accordance with the observations that the microbes and resistome
are shaped mainly by biotic factors22,23.

For most ARGs, we observed that clusters of variants were con-
fined in the same gene synteny and that different gene syntenies were
associated with different genetic variants (Supplementary Data 3 and
4). This suggests that once mobilized and established in a new host,
and even on a global scale, re-organization and shuffling of ARGs and
their surrounding genes does not frequently occur. If it did, we would
not have that kind of globally widespread conservation. Exceptions
might be some of the ARGs associated withmacrolide resistance, such
as erm(B),mef(C), mph(G) and lnu(D).

For some genes, like lsa(E), there were clear geographical clus-
tering of one or more of the sub-variants, suggesting geographical
dispersal limitations. A large cluster of sequences, which were fre-
quently plasmid-associated, however seem to have spread more
quickly across multiple Asian and African countries.

Other examples were observed among the 49 ARGs more closely
studied. Please see the Supplementary Notes for further discussion of
the individual ARGs, flanking variation, including gene synteny, their
clustering and association to each other. However, despite someARGs
displaying signs of archetypical transmission modes, there were fre-
quent outliers, highlighting that biology is full of exceptions.

Taken together, the results highlight the fact that a plethora of
evolutionary roads have been trodden by the modern ARGs that make
up global resistomes. Being on very different evolutionary trajectories,
we should not expect a single model to explain them all. Different
studies that have reached slightly different conclusions, and favoured
different evolutionary models, are not necessarily contradicting each
other, since the overarching pattern will depend on the specific ARG,
its geography and genomic background.

Discussion
Continuous and comparable AMR surveillance through time is essen-
tial to determine the effects of interventions, identify national and
global priorities and identify areas for further research. We have pre-
viously identified urban sewage as a potential area for standardized
metagenomic surveillance which can support other surveillance
activities7,32. In a pilot study we showed the feasibility of the concept
and found that the resistome to a large degree correlated to major
geographic and geopolitical groupings.

In this study we confirmed the high degree of local and regional
stability in the resistome even when sampled over a three-year period.
Noobvious trends in timewereobserved, similar to recent results from
Copenhagen and supporting the view that broad changes in AMR take
place over several years or even decades, and that any significant
impact of interventions aimed at reducing AMR may equally be
delayed33. Seasonality also had a very modest effect (<2%) on the
resistome composition. Importantly, however, we observed that the
global patterns and clusters were heavily dependent on the anti-
microbial class in question. This highlights the many underlying pat-
terns that are lost when naively considering the entire resistome as a
single entity.

In our data, we did observe spread of ARGs, sometimes in many
different genomic backgrounds and in many countries. Though
culture-independent surveillance like this is clearly needed to discover
novel ARG contexts and synteny, E. coli appears to be well-chosen
monitoring target for culture-based surveillance, given its centrality in
our networks and frequent ARG assignments. The importance of E. coli
as a facilitator for increased ARG transmission has also been noted by
others investigating infant gut resistomes34.

Our data could indicate that crossing vast evolutionary bound-
aries happen more in Sub-Saharan Africa. This should be confirmed
with a different approach that can make more definitive taxonomic
classifications though. Horizontal transfer of ARGs ismuchmore likely
to occur between phylogenetically closely related bacteria35,36. This is
for multiple reasons, including codon usage, restriction-modification
systems, and limitations in host range of both conjugative elements
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and bacteriophages thatmake up important dissemination vectors for
ARGs37. It was therefore expected to see strong phylum-separation in
our ARG-sharing network. Exceptions to the rule could however, help
provide insight into ARG transmission and Campylobacter is an
obvious and prominent exception to this rule.

Campylobacter is a proteobacterial genus and the single most
common cause for bacterial gastroenteritis. In this sewage-based net-
work, it clustered with Firmicutes genera, rather than other members
of its phylum.When erm(B) was first observed in Campylobacter, it was
indeed on a large multi-drug resistance genomic island of Gram-
positive origin, carrying multiple ARGs38. The flux of ARGs from Gram-
positive cocci to Gram-negative bacteria has been previously dis-
cussed, with broad-range conjugative plasmids being deemed the
most likely culprits39. Whether Campylobacter’s natural competence
helps explain its phylum-defying position in the network is yet to be
determined.

Zhang et al. looked at a comprehensive collection of public gen-
omes and MAGs and found that most ARGs are carried by less than 10
different MGEs and are either exclusively carried by commensals or
pathogens40. A developed risk index stated that 24% of the metage-
nomic ARGs were a risk to human health. Among the thousands of
ARGs uncovered in our data, many of them are variants not in
ResFinder, are mobile and known to occur in human pathogens.
Continued and extended analysis of ARGs in their flanking environ-
ments across public metagenomes should help us get better ideas
about how individual ARGs, MGEs, and strains disperse. We hope that
sharing of our sewage sequence data, especially from countries pre-
viously lackingmicrobiomedata, will greatly help facilitate such future
cross-consortium projects.

One might wonder whether variable transport lengths from
households to treatment plants affect the measured resistome.
Pehrsson et al. found that street-access sewage resistomes were very
similar to downstream WWTP influent, while both sample types were
compositionally different from human feces and sewage treatment
effluent41. The same could not be said for the bacteriome, indicating
resistomeanalysis at thepoint of theWWTP isnot particularly sensitive
to in-sewage perturbations. Measurements on microbiomes/resis-
tomes are also sensitive to storage conditions, time before freezing
and freeze-thaw cycles and it appears that even sample-specific con-
ditions can change the microbiome profile differently over time42.

The more qualitative (as opposed to quantitative) analyses, such
as epidemiological comparisons of ARG variants and their synteny, are
likely less sensitive to minor perturbations. Hospitals, farms and
industry (including antimicrobial-producing) present in the catchment
area will result in different selective environments and microbiome
changes and it is also important to keep in mind that not all ARGs will
be from human city dwellers, which is potentially a feature for com-
bined urban monitoring.

Largedifferences inARG richnessper citywas observed in a recent
global study including thousands of microbes from mass transit sys-
tem surfaces in 60 cities by Danko et al.43. In that study, same as here
and in our pilot study, the AMR class composition also showed a sig-
nificant geographical signature, both at the city andworld region level.
In the study by Danko et al., there were thousands of samples without
any observed AMR, and there was no set of core ARGs. Each sampling
type has its own pros and cons, and it is not surprising that these two
fundamentally different proxies to the urban environment also have
differences in outcome. Sewage has the benefit of much larger DNA
quantities and not being restricted to cities with mass transit. One
might also expect a specific andbiased subset of a population are users
of the public transport system. Every person in a city, regardless of age,
financial status, and transport needs, contribute to the sewage system
out of biological necessity. With the growing importance of micro-
biome data, more studies generating more datasets with novel sur-
veillance methods across more matrices should be encouraged.

While sewage has benefits as a surveillance matrix, it also has
some inherent characteristics that should be considered. Differences
in the natural or built environments that sewage flow through, che-
mical pollutants etc. will influence the final microbiome. Indeed, the
local climate, environmental conditions and surfacematerial sampled,
in addition to geography, have proven important in other compre-
hensive microbiome studies23,43. Indeed, some of our lowest AMR
measurements were from a location in Madagascar, where there is no
formal sewage treatment and the sewage flow into a lake. It is almost
certain that some of our variation is due to unobserved conditions at
sampling sites. Danko et al. showed that climate was an important
driver of urban microbiome and resistome differences in transport
systems, which of course should also be true for sewage43.

All partners here used a shared protocol and we verified samples
were still frozen at the time of arrival, but variations in package travel
time could be another unwanted source of variation. Even though we
did not see obvious systematic differences, geographical distances
between the sampling sites and Denmark naturally confounded
package travel duration. Future studies would do well in prioritizing
very careful and systematic collection of metadata that can system-
atically highlight confounders, as we constantly learn of new things
that can affect microbiomes.

Even though our metagenomic assemblies revealed a lot of
information onprobable taxonomic origin and the immediate context,
it too has limitations. Given the many city-dwellers contributing to the
wastewater system, sewage is naturally home tomany different strains
of the same species, which is difficult for the assembly process. The
metagenome was highly fragmented and even though, genome bin-
ning was performed, high fragmentation may cast doubt on whether
binnedARGswereassigned to their correct genomebins.We therefore
did not use binning results here and instead relied on scaffold-level
taxonomic assignment. This is obviously database-dependent and
biased by our current knowledge, same as in any other metagenomic
classification study. A known transposon sitting in the genome of a
novel species, would, for example be classified to the known host, if
the assembler and scaffolder were unable to link the genome and
transposon. For broad host-range plasmids, no assembly-based
method can assign them to a given host. Our taxonomic assignments
thus represent our most qualified guess, but are likely to include some
conservative misclassifications, especially among the plasmid-
annotated contigs, whichwe therefore excluded fromcertain analyses.

Future supplementing sequencing with long Nanopore reads of
sewage could potentially enable more robust assignment of ARGs to
novel backgrounds. Indeed such a strategy on plasmid extractions
from a subset of the Global Sewage samples, was able to reconstruct
many plasmids, some of which encoded ARGs44. A web server specifi-
cally aimed at resolving ARG context based on metagenomic Nano-
pore reads was also recently published, and could be of help in such
cases45. For plasmid-borne ARGs, methods involving genomic cross-
linking (Hi-C) or single-cell sequencing, have also proven helpful in
hosts to genes with higher certainty46,47. Indeed, the former has pre-
viously been used to showdiscrete ARG transfer networks in individual
patients over merely weeks of antimicrobial therapy48.

Going forward, it would be valuable to determine exactly how
closely the spatial variations in the sewage microbiome and resistome
aremirrored in human faecal samples. Pehrsson et al. previously found
a significant shift from the donor hosts in rural South America com-
pared to nearby street-level sewage, but whether such shifts are gen-
eralizable and globally true is unknown41.

It is tempting to compare our resistome composition to pre-
viously generated faecal resistomes, but a major challenge for cross-
study comparisons is wet labprotocol differences.OurDNA extraction
SOP and workflow used here was optimized for bacterial diversity and
validated for sewage, human and pig faeces, but different studies and
consortia have opted for different protocols with different biases49.
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Epidemiological and qualitative comparisons of ARG contexts and
synteny will be more suited for such future inter-study comparisons,
even though the lack of a genetic feature will have to be carefully
interpreted.

Based on our data, we believe that the same ARGs will respond
very differently to the same intervention worldwide as geography
confounds both differences in genomic background, plasmid carriage,
co-resistance, andmobilization potential to amuch larger degree than
we anticipated. This suggests that solutions will need to be adapted to
local conditions. National Action Plans should be supported by local
genomic surveillance that can inform interventions and be used to
evaluate outcomes, whether they be local, national, or even regional.
These could involve the tried and tested avoidance of specific anti-
biotics, but alternative anthropogenic interventions such as dietary
changes, which modulate the human microbiome, as well as factors
leading to increased transmission are also of potential interest. No
matter the chosen intervention, sewage genomics can enable mon-
itoring of the local AMR load, variants, diversity, and syntenies in the
urban reservoir. For simple complementary passive surveillance of the
global AMR burden, annual samples from major cities may be suffi-
cient, but to separate geographical from seasonal effects over both
hemispheres, we suggest at least two annual samples per site are
required.

Methods
Sampling, DNA-purification, and sequencing
Collection of sewage from global sites, DNA-purification, and
sequencing were organized and conducted similarly to the previous
study7. Briefly, on request, empty bottles were shipped to worldwide
project partners, who were briefed on sample inclusion criteria. Only
samples of raw, untreated, urban sewage prior to any processing were
requested. For locations without any sewage treatment, samples were
gathered at the sewage outlet into e.g., a river or lake. This was con-
ducted bi-annually in June and November over the study period to
account for seasonal differences which are important at the global
scale. Additionally, a subset of sites across six geographical regions
were longitudinally sampled from 2017–2018. We also included sam-
ples from an additional longitudinal Tanzanian campaign and from
confirmatory samples taken the day after the original 2016 sampling
round (Supplementary Fig. 16).

Additional photos andmetadata were collected about the sites,
samples, and shipping condition. Analyses in the pilot study did not
reveal obvious confounders variables, but the data sources were
used to identify and exclude a number of samples that were deemed
inappropriate or outside the scope of the study, e.g., a number of
samples from non-municipal sewage systems like schools and
hotels.

Bottles containing frozen sewage were shipped back to Technical
University of Denmark (DTU) for QC, DNA extraction and vacuum up-
concentration when needed. Aliquots of 100+ ng Qubit-quantified
metagenomic DNA were then shipped on dry ice for library prepara-
tion and DNA sequencing at Admera Health (New Jersey, USA).

All newer samples, absent in the earlier pilot study, were
sequenced on the Illumina NovaSeq6000 instrument as opposed to
the HiSeq4000. The same fragment size, read lengths and sequencing
depth were targeted and the choice of PCR-free Kapa Hyper library
prep was also kept constant throughout the project. A comparison of
resistomes analysed on the two different machines, did not reveal any
detectable instrument effect (Supplementary Fig. 17). See Supple-
mentary Data 1 for metadata on the sequencing datasets and samples
used, as well as ENA accessions.

Bioinformatics and QC
All bioinformatics analysis was performed on the Danish National Life
science supercomputer, Computerome2 on nodes each equippedwith

dual 20-core Intel Xeon Gold 6230 CPUs and either 192GB or 1.5TB
RAM. The latter high-memory nodes were used for assembly, which
required >500GB memory for the most diverse samples.

Each of the paired-end sequencing libraries were quality- and
adapter-trimmed with an in-house wrapper script utilizing BBduk2,
which is part of the BBmap suite of NGS tools50. We removed common
adapters and trimmed the 3′-end of the reads to a sliding window,
using a Phred score of Q20, corresponding to a 1% error rate.

General data manipulation was carried out in R.

Genomic and taxonomic context of ARGs
Thepaired and singleton reads from the individual sequence runswere
then subjected to metagenomic assembly using metaSPAdes (SPAdes
v. 3.13.0) with the following k-mer sizes: 27,47,67,87,107,127 and the
“pre-correction” flag set51. This ends on the largest allowed k-mer, is
still below the read length and uses the default increment of 20. The
settings were chosen to promote larger unbroken contigs, minimize
the risk of chimeric variants andmaximize the chance to bridge known
repetitive regions near ARGs. To avoid issues with different fragment
size distributions, the deepest sequence runwas used for sampleswith
multiple sequence runs. Scaffolds smaller than 1 Kbwere filtered away.
The scaffolded contigs were searched for ARGs using the ResFinder
tool with default settings (>90% identity, >60% covered) and without a
specific taxa selected52.

To determine the genomic diversity of AMR gene backgrounds,
we extracted the flanking regions of ResFinder hits in the following
manner. ResFinder hits within an assembled contig were masked with
N’s and 1 Kbup- and down-streamof themasked regionwere extracted
with BEDtools (v 2.28.0)53. ResFinder hits with shorter than 1 Kb to a
contig end were excluded from flank-based analyses. While somehow
arbitrary, the 1 Kb threshold was a compromise between retaining
many ARGs and simultaneously requiring enough k-mers for detailed
resolution. The threshold was also set to roughly correspond to a
single gene on either site of the target and prohibit comparisons
between unrelated genome positions on larger scaffolds. Synteny
analyses were also run for observed ARGs that could satisfy 5 Kb
flanking regions. Per-ARG plots for those can be found clustered on
flank dissimilarity (Supplementary Data 5) and ARG dissimilarity
(Supplementary Data 6).

The metagenomic scaffolds with ResFinder hits were assigned
taxonomically using Kraken 2 (v. 2.0.8) to the premade Base collection
database (2020/9)54. Taxa were evaluated at taxonomic levels from
genus to phylum.

Clustering of ARGs and flanking sequences
The number of k-mers shared between the flanking sequence (1 Kb)
was used to compute the Szymkiewicz–Simpson dissimilarity index
using the KMA dist subcommand (v. 1.3.3)55. This index gives the pro-
portion of k-mers in a contig that are contained within another.

The Szymkiewicz–Simpson dissimilarity matrix was also com-
puted for the variants of each ARG and compared to the correspond-
ing flank Szymkiewicz–Simpson dissimilarity matrix. For each gene,
UPGMA dendrograms were constructed from the flank and gene
matrices andwere compared to eachother using tanglegrams, in order
to determine whether tree topology was similar for flanking and gene
sequence. For each gene, up to 100 iterations of the step2sidemethod
was used to untangle the tanglegram as much as possible, after which
the entanglement score was calculated using the dendextend R pack-
age (v. 1.14.0)56. In additional to that, the flank and gene dissimilarity
matrices for each gene were ordinated to two dimensions using clas-
sicalmultidimensional scaling (PCoA) and correlated usingMantel and
Procrustes correlation using the vegan R package (v. 2.6.2)57. This was
conducted to obtain correlation coefficients, which should be more
robust to identical sequences in a subset of the samples,which result in
random tree topology. For a schematic of the workflow for comparing
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gene sequences and their immediate flanking regions, see Supple-
mentary Fig. 18.

Classification of plasmid scaffolds
Metagenomic scaffolds with one or more ResFinder hits with at least
1Kbflankon either sidewere then subjected to additional screening for
potential plasmid origin. We downloaded the PLSDB database (v.
2020_11_19) and queried the contigs against it using BLASTn, requiring
at both 90% identity and query coverage58.

The scaffolds were also queried against a custom Kraken 2 data-
base with the plasmids in an artificial domain-level plasmid group54.
This allows each sequence to be classified as chromosomal or plas-
midic based on its k-mer content.

Lastly, we ran PPR-Meta (v. 1.1) with default parameters on the
scaffolds59. Scaffolds which had at least two classifiers agreeing on
plasmid origin, were labelled as plasmidic.

Sequence clustering association to sample geography and
season
Thedegree and significance of clustering based onWorld Bank regions
and seasonality was determined individually using permutational
ANOVA (adonis2, vegan57). Samples were classified depending on if
which half-year they were sampled in, and the sign was then changed
depending on positive/negative latitude. For each ARG, the effect of
region on flanking dissimilarity was separately established for flanks
assigned the most frequent genus.

Antimicrobial resistance quantification
Trimmed reads of all libraries were aligned with KMA (v. 1.2.17a) to the
ResFinder database of known and acquired resistance genes (Commit
813679d) and the Silva (Silva version 138) database made from more
than 13 million sequences 16/18 S rRNA, which attempts to cover all
cellular life and include thousands of bacterial species across 89
phyla52,60. KMA was used to generate mapstat files summarizing
abundance ineach sample using the trimmedpaired-end and singleton
reads per sample as described below.

For ResFinder, KMA was used with the following arguments:
-mem_mode -ef −1t1 -cge -nf -vcf -shm 1 -t 1. A total of 20.3M sequence
fragments were assigned to ResFinder ARGs with 19.9M ( >98%) of
them aligned to templates at least half covered. In the alignments, the
read-reference identities ranged between 90.44 and 100% (med-
ian: 99.68%).

The sewage samples contain variable proportions of non-bacterial
DNA, which is not relevant to ARG quantification. Since we want a
measure to reflect howmuch resistance is carried by the bacteria in the
sample, we adjusted the number of ARG-assigned fragments to a proxy
for bacterial load per sample. To accomplish this, we aligned reads to
the Silva 16/18 S rRNA gene database with the following arguments:
-mem_mode -ef −1t1 -apm f -nf -t 3.

The Silva fragments assigned to the Bacteria domain were sum-
med up per sample for use as a normalization factor. To calculate a
relative abundance (other than for PCA), aligned ARG fragment counts
per sample were adjusted both for their ResFinder reference template
and the sample-specific number of fragments assigned to the super-
kingdomBacteria. This was done according to Eq. (1) in order to obtain
a relative abundance of Fragments Per Kilobase reference per Million
bacterial fragments:

Relative Abundance =
ARGFragments

ARGLength × BacteriaDepth
× 109 ð1Þ

WhereARGFragments is thenumberof sequencing fragments assigned to
a reference sequence, ARGLength is the length of the ARG reference and
BacteriaDepth is the sum of fragments assigned specifically to Silva
sequences in the superkingdom Bacteria.

AMR abundance at higher levels
With theConclavewinner-takes-it-all strategy, KMAassigns unanimous
reads to the most parsimonious reference sequence, but given very
low abundance, the algorithm might assign reads from the same ARG
to variable reference bins in different samples, obscuring meaningful
inter-sample comparison. To identify close homologs that KMA could
potentially assign differently across samples, we used USEARCH (v.
11.0.7) to homology reduce ResFinder ARG collection to 90% nucleo-
tide identity, with query and target coverage thresholds of 0.961. These
homology groups were then used to bin the abundance of minor
variant-assigned reads to their representative sequences, which was
also used to name the groups.

In addition to binning abundance of variants to ARG level, abun-
dance was also binned to the level of drug classes and phenotypes as
annotated in “ResFinder [https://bitbucket.org/genomicepidemiology/
resfinder_db/src/master/phenotypes.txt]”.

Principal components analysis
The principal component analysis (PCA) was carried out in respect to
the compositional nature of metagenomic data. Briefly, zeros were
imputed using the method highlighted in the supplement of previous
work62. For each biplot, the subset of length-corrected counts was
centered by the geometric sample mean and scaled by the total log-
ratio variance followed by a centered log-ratio (CLR) transformation.
The resulting CLR coefficient matrix was eigen-decomposed into
eigen-vectors and -values from which the principal components were
obtained and plotted as previously recommended63. The analysis was
performed using “the PyCoDa package [https://bitbucket.org/
genomicepidemiology/pycoda]” in Python (v. 3.7).

Alpha diversity analysis
For calculating resistome alpha diversity, samples with less than
1000 ResFinder-assigned fragments were filtered away. The
ResFinder counts were randomly subsampled without replacement
to the depth of the new sample with fewest counts using the vegan R
package (v. 2.6.2)57. Alpha diversity for bacterial genera was per-
formed identically, with the exception that 10,000 counts were
required per sample.

Network analysis of bacteria and ARGs
Scaffolds that satisfied the following criteria were considered for net-
work analysis: (1) Were Kraken 2-assigned to the superkingdom Bac-
teria, (2) Encoded an ARG according to the ResFinder tool result, (3)
Had at least 1 Kb sequence up- and down-stream from the found ARG,
(4) had Kraken 2 taxonomic assignment at the genus level. Addition-
ally, we required at least 2/3 plasmid-annotation programs agreed the
scaffold was not of plasmid origin.

In the set of scaffolds surviving the above-mentioned filtering, we
counted the number of ResFinder ARGs occurring on sequences from
each genus and used these as edge weights. Subgraphs of connected
bacteria and ARG nodes were then laid out and visualized using the
backbone algorithm and the ggraph R package (v. 2.0.5).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data (FASTQ) generated in this study have been
deposited in the European Nucleotide Archive and can be accessed
without restrictions. The data from major sampling rounds have the
following project accession numbers: PRJEB40798, PRJEB40816,
PRJEB40815 and PRJEB27621. Sequencing data from the longitudinal
city sampling sites are deposited under PRJEB51229, while the included
datasets from the previous study are deposited under ERP015409.
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See Supplementary Data 1 for exact sample, experiment and run
accessions. Source data are provided with this paper.

This study also utilized the publicly available databases of
ResFinder, PLSDB, Silva and Kraken 2.
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