
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The gut microbiome but not the resistome is associated with
urogenital schistosomiasis in preschool-aged children

Citation for published version:
Osakunor, D, Munk, P, Mduluza, T, Petersen, TN, Brinch, C, Ivens, A, Chimponda, T, Amanfo, S, Murray, J,
Woolhouse, M, Aarestrup, FM & Mutapi, F 2020, 'The gut microbiome but not the resistome is associated
with urogenital schistosomiasis in preschool-aged children', Nature. https://doi.org/10.1038/s42003-020-
0859-7

Digital Object Identifier (DOI):
10.1038/s42003-020-0859-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Nature

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. May. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/322484493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/persons/alasdair-ivens(cc71b169-e621-4a75-85c6-9fedb2922c4c).html
https://www.research.ed.ac.uk/portal/en/persons/seth-amanfo(e674b77c-c45d-4bba-8cf7-11a5e456c8e6).html
https://www.research.ed.ac.uk/portal/en/persons/janice-murray(50a81600-8b7b-4def-ad38-7c85bac33c77).html
https://www.research.ed.ac.uk/portal/en/persons/mark-woolhouse(da2d6a06-c126-4a57-ad32-91a9f4dc6e0d).html
https://www.research.ed.ac.uk/portal/en/persons/mark-woolhouse(da2d6a06-c126-4a57-ad32-91a9f4dc6e0d).html
https://www.research.ed.ac.uk/portal/en/persons/francisca-mutapi(f4f7355c-51bf-4447-94e4-7cd03f635527).html
https://www.research.ed.ac.uk/portal/en/publications/the-gut-microbiome-but-not-the-resistome-is-associated-with-urogenital-schistosomiasis-in-preschoolaged-children(f0b3e071-ef3b-4994-b725-65de400388af).html
https://www.research.ed.ac.uk/portal/en/publications/the-gut-microbiome-but-not-the-resistome-is-associated-with-urogenital-schistosomiasis-in-preschoolaged-children(f0b3e071-ef3b-4994-b725-65de400388af).html
https://doi.org/10.1038/s42003-020-0859-7
https://doi.org/10.1038/s42003-020-0859-7
https://doi.org/10.1038/s42003-020-0859-7
https://www.research.ed.ac.uk/portal/en/publications/the-gut-microbiome-but-not-the-resistome-is-associated-with-urogenital-schistosomiasis-in-preschoolaged-children(f0b3e071-ef3b-4994-b725-65de400388af).html


ARTICLE

The gut microbiome but not the resistome is
associated with urogenital schistosomiasis in
preschool-aged children
Derick N.M. Osakunor 1✉, Patrick Munk 2, Takafira Mduluza3, Thomas N. Petersen2, Christian Brinch2,

Alasdair Ivens1, Theresa Chimponda3, Seth A. Amanfo4,5, Janice Murray1,5, Mark E.J. Woolhouse 4,5,

Frank M. Aarestrup 2 & Francisca Mutapi1,5

Helminth parasites have been shown to have systemic effects in the host. Using shotgun

metagenomic sequencing, we characterise the gut microbiome and resistome of 113 Zim-

babwean preschool-aged children (1–5 years). We test the hypothesis that infection with the

human helminth parasite, Schistosoma haematobium, is associated with changes in gut

microbial and antimicrobial resistance gene abundance/diversity. Here, we show that bac-

teria phyla Bacteroidetes, Firmicutes, Proteobacteria, and fungi phyla Ascomycota, Microsporidia,

Zoopagomycota dominate the microbiome. The abundance of Proteobacteria, Ascomycota, and

Basidiomycota differ between schistosome-infected versus uninfected children. Specifically,

infection is associated with increases in Pseudomonas, Stenotrophomonas, Derxia, Thalassospira,

Aspergillus, Tricholoma, and Periglandula, with a decrease in Azospirillum. We find 262 AMR

genes, from 12 functional drug classes, but no association with individual-specific data. To our

knowledge, we describe a novel metagenomic dataset of Zimbabwean preschool-aged chil-

dren, indicating an association between urogenital schistosome infection and changes in the

gut microbiome.
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The human gut comprises a diverse ecosystem of microbes,
predominantly bacteria, in addition to viruses, fungi and
other eukaryotes1. Evidence shows that humans rely on the

symbiotic relationship with the resident microbial taxa present in
humans (microbiota) for extracting essential nutrients from food,
as a first line of protection from pathogens, and as a mechanism
for shaping the immune system2. Shotgun metagenomic
sequencing has allowed characterisation of the microbiome (the
assembly of genomes of the microbiota) among different human
populations, showing considerable heterogeneity2,3. Populations
in Africa have been underrepresented in such studies, with a
major focus on Western populations4. Other studies have inclu-
ded diverse but older populations, not allowing the factors
inherent to African childhood to be fully disentangled5–8. Given
the potential window of opportunity for influencing health
through the microbiome in infants and young children9, research
focus on this age group is important. Findings from consortiums
including the Human Heredity and Health in Africa (H3 Africa)
and the HapMap Project will be invaluable for informing
nutraceuticals in Africa10,11.

The composition of the gut microbiome is influenced by
age8,12, diet and geography5,13,14, host genotype15, exposure to
maternal microbiota16, as well as environmental factors17

including the role of protozoal and helminth parasites18. In
Africa, children are exposed to several acute and chronic parasitic
infections that can impact children’s growth and development19.
In particular, helminth parasites (as shown for schistosome
worms) can be contracted by children as young as 6-month-old
or less20,21, and these can persist into the second decade of life
where they modulate the immune system as well as cause mor-
bidity and pathology22. In very young children, the gut microbial
population continues to evolve until about age 3–5 years8,12, thus
it is important to establish how external factors, especially
infections, that young children are exposed to, influence the
microbiome.

Schistosomiasis is a disease caused by infection with trema-
todes of the genus Schistosoma—the predominant human species
found in Africa being the urogenital (S. haematobium) and
intestinal (S. mansoni) forms23. Pathology from the disease is
mostly from immunological reactions to trapped eggs attempting
to migrate through to the bladder or intestinal lumen, depending
on the species involved. The infection causes immunomodulatory
effects which help to promote both parasite and host survival24,25,
and in preschool-aged children, consequences can extend to
malnutrition, poor growth and cognition, reduced vaccine effi-
cacy, and altered prognosis of co-infections26,27. Treatment for
schistosomiasis is through administration of the antihelminthic
drug, praziquantel, which is effective against all schistosome
species28.

A number of experimental and human studies, including our
own, have examined the association between helminth infections
and the structure and composition of the gut microbiome29–35. It
has been suggested that the immunomodulatory effects of schis-
tosome infection can extend to the gut microbiota through direct
intestinal or systemic interactions18. Work in experimental
models shows that depletion of the gut bacteria is associated with
reduced S. mansoni egg excretion, gut pathology and inflamma-
tion32. Recently, fluctuations in the composition of the gut
microbiota of mice infected with S. mansoni, before and after
intestinal damage from egg transmission was shown36. This is
consistent with a role of the mammalian gut microbiota in the
pathogenesis of schistosome infection. However, unlike S. man-
soni (intestinal form) that inhabits the same environment as the
gut microbiota, S. haematobium predominantly resides in
the venous plexus of the bladder (although occasionally in the
mesenteric circulation37), and thus presents a need to study the

indirect systemic impacts of infection on the gut microbiota—a
more likely interaction. Correlations between the gut microbiome
and systemic diseases such as rheumatoid arthritis suggest the
importance of such systemic interactions38. Phenotypic and
mechanistic studies on systemic interactions between helminths
and the microbiome in natural human infections are still in their
infancy, and more studies are needed. In a previous study, we
found differences in the gut microbiome between S. haematobium
infected versus uninfected children, aged up to 13 years old35.
This was supported by Schneeberger et al.34, suggesting that
genetic and environmental factors may play an additional role.
Recently, a study conducted among older children (11–15 years)
in Nigeria showed that urogenital schistosomiasis is associated
with disruptions in the gut microbiome, suggesting that this may
be a further consequence of schistosome infection39. However,
substantial knowledge gaps on the interaction between the gut
microbiome and Schistosoma infection in preschool-aged children
still exist. The biggest challenges are demonstrating causation and
elucidating mechanistic pathways for any existing interactions.

In addition to the schistosome–microbiota interactions, other
interactions relevant to the health of the host have also been
reported to occur within the gut ecosystem. One such example is
the ability of Salmonella to persist in the body by attaching to
intestinal schistosomes, evading repeated antibiotic treatments,
increasing the Salmonella population and eventually, potential
antibiotic resistance40,41. Furthermore, the microbiome is a reser-
voir for antimicrobial resistance (AMR) genes (resistome)42,43, and
provides an ideal environment for AMR gene exchange among the
“resident” and transitory bacterial population44. Such interactions
are likely to impact the structure and diversity of the resident
microbial population, as well as the overall AMR gene composition.
We therefore investigated the structure of AMR genes to bacteria
and determined if this was associated with any host-related factors
including socio-demography, antibiotic use, current schistosome
infection, as well as feeding, growth and nutritional indices. AMR
remains one of the largest threats to human health, with numerous
calls for antibiotic resistance stewardship worldwide42,45,46. How-
ever, this population of African preschool-aged children is under-
studied, and almost all AMR gene studies are conducted in
industrialised settings43,47–50. Such settings contrast with low-and
middle-income countries in terms of access to safe water and
sanitation, and access to antibiotics, with or without prescriptions51.

Within the framework of a larger paediatric schistosomiasis
study in Zimbabwe, the present study focuses on shotgun meta-
genomic sequencing of stool samples from preschool-aged chil-
dren, aged 1–5 years old. To add to the repository of information
on the gut microbiome and AMR studies in this young popula-
tion, we characterise the structure and diversity of the gut
microbiome (to include the fungi repertoire) and resistome. We
apply these data to test the hypothesis that S. haematobium
infection is associated with alterations in the gut microbial and
AMR gene abundance and diversity. We find that the micro-
biome but not the resistome is associated with S. haematobium
infection, independent of age, sex and village.

Results
Population characteristics. Of the 113 participants included in
the study, the mean age was 3.7 ± 1.1 years, of which 56 were
females (49.6%). Sixty-eight (60.2%) and 45 (39.8%) children
were from Chihuri and Mupfure villages, respectively. Anti-
microbial use data showed that 58 (51.3%) participants had
received antibiotics [amoxicillin (31), co-trimoxazole (27), both
(9)], while 18 (15.9%) had not; no information was obtained for
the remaining 37 (32.7%) participants. Previous history of pra-
ziquantel treatment (for schistosome infection) was reported
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among 29/105 (27.6%) children. S. haematobium infection pre-
valence was 15.9% (18/113), with mean infection intensity of 1.79
eggs/10 ml urine (SEM= 0.76; range= 0–74).

We gathered data on the history of feeding habits and
nutritional status of the children. The majority (83.6%) were
breastfed, with duration ranging from 2 to 48 months (median=
18 months IQR: 17–20). Children were introduced to solid foods
between 1 and 24 months after birth. Diet comprised mainly of
traditional maize flour porridges (97%; 96/103), the commercial
Cerelac® porridge (1.9%; 2/103), and potatoes (1%; 1/103).
Anthropometric measures, adjusted for age, were used to assess
nutritional status27. Based on the weight-for-height Z scores
(WHZ), 3.7% (4/107) of individuals were malnourished and
14.7% (16/109) were stunted, based on the height-for-age Z scores
(HAZ)52.

Taxonomic composition of the microbiome. The number of
classified read pairs per sample ranged from 3,994,704 to
13,164,482. An average 45.1% of read pairs were mapped to
specific reference sequences in the genomic database; this is
similar to other studies with the proportion of unmapped reads
ranging from 42% to 68%53–55. At any taxonomic level, a putative
taxonomic classification could not be assigned to at least 33% of
the mapped read pairs and were thus classified as “Unknown”.

In the 113 stool samples, 845 bacteria genera (from 20 unique
phyla) and 228 fungi genera (from six unique phyla) were detected.
As shown in Fig. 1, the most abundant bacteria phyla in decreasing
order were Bacteroidetes (genera: Prevotella, Bacteroides, Alistipes),
Firmicutes (genera: Eubacterium, Faecalibacterium, Clostridium,

Roseburia), and Proteobacteria (genus: Succinatimonas). The most
abundant fungi phyla were Ascomycota (genera: Protomyces,
Aspergillus, Taphrina, Saccharomyces, Candida, Nakaseomyces),
Microsporidia (genus: Enterocytozoon), and Zoopagomycota (genus:
Entomophthora) [Fig. 2]. These phyla dominated the microbiome
and were present in all samples.

Variation in the microbiome and association with sample
metadata. Principal component analysis (PCA) was used to
initially examine variability and patterns in the data set across the
first two principal components. At the phylum level, PCA
explained 62% and 42.0% of the total variation in fungi and
bacteria, respectively. At the genus level, however, PCA explained
34% and 16% of the total variation in fungi and bacteria
respectively. The model showed homogeneity in components
with no distinct clustering according to metadata and may reflect
a high diversity in the cohort. PCA plots and cluster dendrograms
for bacteria and fungi content per sample is shown in Supple-
mentary Figs. 1–3.

Permutational multivariate analysis of variance (PERMA-
NOVA) analysis showed a significant effect of age (false discovery
rate (FDR)= 0.024) and village (FDR= 0.039) [details shown in
Supplementary Fig. 4], schistosome infection status (FDR=
0.039) and schistosome infection intensity (FDR= 0.012) on
bacteria genera, across samples. There was also a significant effect
of schistosome infection status (FDR= 0.006) and schistosome
infection intensity (FDR= 0.006) on fungi genera, across the
samples. For both bacteria and fungi genera, no such effects were
found for sex, nutritional and growth variables, feeding, previous

Fig. 1 Overview of bacterial microbiota abundance and composition. From read mapping to the genomic database, abundance was calculated for each
microbial taxa across all samples. Stacked bar charts show the most abundant bacteria (a) phyla and (b) genera per sample, proportional to the total
microbiota within each sample (n= 113 biologically independent samples). Charts were generated using normalised, zero-corrected abundance matrices.
“Unknown” represents abundance data for which a putative taxonomic classification could not be assigned. “-Others” represents abundance data for all
other taxa in the abundance data set.
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praziquantel treatment, and antibiotic use (FDR > 0.05). Sum-
mary output from the analysis is shown in Table 1.

Different genera by schistosome infection status and intensity.
We investigated further, via analysis of composition of micro-
biomes (ANCOM), how specific bacteria and fungi genera were
associated with S. haematobium infection, while controlling for
age, sex and village, followed by evaluation for association with
infection intensity. In total, eight genera were identified, five from
bacteria (Pseudomonas: W= 347, Azospirillum: W= 346, Steno-
trophomonas: W= 292, Derxia: W= 288, and Thalassospira:
W= 292) and three from fungi (Aspergillus: W= 75, Tricholoma:
W= 73 and Periglandula: W= 70). The magnitude of these
changes were shown by plotting the abundance of each sample to
highlight differences between groups. In schistosome-positive
children, the abundance of all but Azospirillum was higher
(Fig. 3a–e). This observation was consistent with infection
intensity [Pseudomonas (r= 0.3; p= 0.001), Stenotrophomonas
(r= 0.4; p < 0.001), Derxia (r= 0.6; p < 0.001), Thalassospira (r=
0.6; p < 0.001) and Azospirillum (r=−0.4; p < 0.001)] as shown in
Fig. 3f–j. Likewise, the abundance of Aspergillus, Tricholoma, and
Periglandula was higher in schistosome-positive children
(Fig. 4a–c) and was consistent with infection intensity as shown
in Fig. 4d–f [Aspergillus (r= 0.5; p < 0.001), Tricholoma (r= 0.5;
p < 0.001), and Periglandula (r= 0.4; p < 0.001)].

AMR gene characterisation. An average 0.06% of read pairs were
mapped to AMR genes in the ResFinder database. We found
evidence of 262 AMR genes, belonging to 12 functional drug class
levels. AMR genes belonging to tetracycline was the most

common, followed by beta-lactam, macrolide, sulfonamide and
nitroimidazole. Of these, the most abundant genes were cfxA6,
followed by tet(Q), tet(W), sul2, erm(F) and nimE (Fig. 5).

Variation in the resistome and association with sample meta-
data. PCA was used to initially examine variability and to identify
clustering according to individual metadata. The model for the
first two components explained 18.0% and 48.0% of the total
variability in AMR genes and drug classes respectively. Similarly,
there was no clustering according to individual metadata,
reflecting high cohort diversity and the role of other factors in
influencing the resistome. PCA plots and cluster dendrograms of
AMR genes and their drug classes per sample is shown in Sup-
plementary Figs. 5–6.

PERMANOVA analysis did not show any significant associa-
tion of AMR genes with age, village, sex, feeding, malnutrition,
stunting, S. haematobium infection, previous praziquantel treat-
ment and antibiotic use on AMR genes. Model summaries of
sample metadata and association with AMR genes is shown in
Supplementary Data 2.

Discussion
Using shotgun metagenomic sequencing, we characterised the
structure and composition of the human gut microbiome and
resistome in this Zimbabwean preschool population (≤5 years
old). Age8,12, dietary and environmental patterns5,13,17, ethnicity,
and geography14,56 have a substantial impact on the taxonomic
composition of the microbiome. Prevotella and Candida57,58 have
been associated with carbohydrate-rich diets, and Bacteroides
with protein-rich diets57. This is a reflection of the dietary lifestyle

Fig. 2 Overview of fungal microbiota abundance and composition. From read mapping to the genomic database, abundance was calculated for each
microbial taxa across all samples. Stacked bar charts show the most abundant fungi (a) phyla and (b) genera per sample, proportional to the total
microbiota within each sample (n= 113 biologically independent samples). Charts were generated using normalised, zero-corrected abundance matrices.
“-Others” represents abundance data for all other taxa in the abundance data set.
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among populations in developing countries5,17, including
infants59, and these genera were among the most abundant
bacteria and fungi genera found in the current study population.
Similar to our previous findings35, we found age but not sex-
related associations in bacteria genus diversity. Given that the
population in the current study were ≤5 years old, this is

consistent with the microbiome being more dynamic in the early
years of life before stabilising to a more adult-like state8,12.

Differences observed in the microbiome between developi-
ng and developed countries have been attributed to factors
inherent to such developing areas5, which may include the role of
persistent prevalence of helminth infections, as reviewed by

Table 1 Model summaries of sample metadata and association with the gut microbiome.

Variable n Bacteria Fungi

p value SSExplain SSTotal FDR p value SSExplain SSTotal FDR

Age (years) 113 0.004 1344.6 82733.4 0.024 0.082 128.6 9489.2 0.197
Sex 113 0.172 878.1 83200.0 0.258 0.439 82.8 9534.9 0.671
Village 113 0.012 1254.0 82824.0 0.039 0.060 140.4 9477.4 0.180
S.h. infection status (pos/
neg)

113 0.013 1185.1 82892.9 0.039 0.001 339.0 9278.7 0.006

S.h. infection intensity 113 0.001 1514.5 82563.6 0.012 0.001 670.1 8947.7 0.006
Malnourished, yes/
no (WHZ)

107 0.866 589.1 78498.2 0.913 0.830 59.5 9145.6 0.830

Stunted, yes/no (HAZ) 109 0.407 754.6 79751.0 0.542 0.611 71.5 9227.2 0.671
Months breastfed 90 0.082 954.9 64235.8 0.140 0.470 75.2 6985.0 0.671
Months solid food
introduced

102 0.913 573.1 75583.0 0.913 0.615 73.5 8792.0 0.671

Previous praziquantel
treatment

105 0.071 991.9 77387.4 0.140 0.233 101.6 8934.5 0.466

Amoxicillin (yes/no) 76 0.771 646.6 55603.4 0.913 0.531 78.4 6567.3 0.671
Co-trimoxazole (yes/no) 76 0.030 1083.6 55166.4 0.072 0.048 158.3 6487.4 0.180

The table represents PERMANOVA output for bacteria and fungi genera. Classification of nutritional status was based on a cut off <−2 Z scores52. Schistosome infection intensity was log transformed
(log10 [egg count + 1]). S.h. S. haematobium, WHA weight-for height Z scores, HAZ height-for-age Z scores, pos/neg positive/negative, p value unadjusted p value, FDR adjusted p value (FDR-corrected),
SSExplain explained sum of squares, SSTotal total sum of squares.
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Fig. 3 Different bacteria genera between schistosome-infected children compared to uninfected children. (a–e) Box plots showing the abundance of
specific bacteria genera, grouped by S. haematobium infection status. The horizontal box lines represent the first quartile, the median, and the third quartile.
Whiskers denote the range of points within the first quartile −1.5× the interquartile range and the third quartile +1.5× the interquartile range. (f–j) Scatter
plots showing linear regression analysis of S. haematobium infection intensity and bacteria genera abundance. The clr-transformed abundance data were
used for all plots. Infection status was coded as 0 and 1 for negative (n= 95) and positive (n= 18), respectively. S. haematobium infection intensity was log
transformed [log10 (egg count+ 1)]. Shaded areas indicate the 95% confidence intervals.
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Mishra et al.18. Our findings are consistent with observations that
schistosome infection is associated with alterations in the diver-
sity and abundance of specific taxonomic groups in the
microbiome34,35. In the aforementioned studies, which included
preschool and school-aged children, 16S rRNA sequencing
showed that Prevotella and Proteobacteria were more abundant in
children infected with S. haematobium35 and S. mansoni34

respectively, when compared to uninfected children. To the best
of our knowledge, the novelty of the current study is the fact that
this population is much younger (≤5 years old), an age group
whose gut microbiome structure is most likely still being estab-
lished. Our study thus provides an important insight into hel-
minth infection and its association with changes during the
establishment of the gut microbiome in preschool-aged children
in endemic areas. We also expand on this to include the fungal
component of the microbiome. More relevant to our finding is
that this association was independent of age, sex and village.

Phyla that clearly differentiated the microbiome of the
schistosome-infected versus uninfected children were Proteo-
bacteria, Ascomycota and Basidiomycota. These were among the
top five most abundant bacteria or fungi phyla and were present
in all samples, thus make a major contribution to the overall
microbiome composition. Proteobacteria has been shown to be
present in lower abundances in healthy individuals, and any
increases in abundance of members of this phylum confirm dys-
biosis and a link with increased disease risk, progression and
burden60. Attempts have been made to expand the body of
knowledge on the fungi repertoire and diversity in the human
microbiome61 and their association with infection and disease62–64.
Studies have suggested that gut fungal populations directly or
indirectly help to maintain healthy intestinal homoeostasis and that
dysbiosis has immunological consequences65. Increases in specific

fungi populations such as Aspergillus have been associated with
increased eosinophil levels66 and an exaggerated Th2 response65,
also characteristic of schistosome infection, which may explain our
observation of the association of schistosome infection with specific
fungal populations (Aspergillus, Tricholoma and Periglandula).
However, whether our observation was due to primary changes in
the fungal population or were secondary to changes in the bacterial
population is unclear. To the best of our knowledge, this is the first
study to examine such an association and further studies into the
role of fungal dysbiosis in schistosome infection are warranted.

Although we cannot infer causation, we are able to determine
that for the genera differentiating the microbiome of the
schistosome-infected versus uninfected children, there was a
positive relationship between microbial abundance and schisto-
some infection intensity. Hence, it is possible that schistosome
infection resulted in alterations in the gut microbiome. However
as S. haematobium worms mostly reside in the pelvic venous
plexus (although some have occasionally been detected in the
intestine in Egyptian autopsies37), the effect of infection on the
diversity of the microbiota is as suggested for intestinal hel-
minths33, but most likely through a more indirect or systemic
route than through direct interactions18. Mishra et al.18 have
suggested that the immunomodulatory effects of helminths can
extend to the gut microbiota through both direct intestinal
interactions and systemic interactions. For example, by enhancing
the mucosal barrier, tissue repair, production of antimicrobial
peptides and reducing dissemination of microbiota to the spleen
and liver18, the upregulation of IL-22 during helminth infection
may favour the abundance of specific microbial taxa67.

We identified 262 AMR genes, most of which encoded
for resistance to tetracycline, beta-lactam, macrolide and sulfo-
namide, posing risks to successful treatment of various conditions
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Fig. 4 Different fungi genera between schistosome-infected children compared to uninfected children. (a–c) Box plots showing the mean abundance of
specific fungi genera, grouped by S. haematobium infection status. The horizontal box lines represent the first quartile, the median and the third quartile.
Whiskers denote the range of points within the first quartile −1.5× the interquartile range and the third quartile +1.5× the interquartile range. (d–f) Scatter
plots showing linear regression analysis of S. haematobium infection intensity and fungi genera abundance. The clr-transformed abundance data were used
for all plots. Infection status was coded as 0 and 1 for negative (n= 95) and positive (n= 18), respectively. S. haematobium infection intensity was log
transformed [log10 (egg count+ 1)]. Shaded areas indicate the 95% confidence intervals.
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including urinary, enteric and respiratory infections68. It is thus
not surprising that the data on antimicrobial use for the current
study showed predominantly amoxicillin (beta-lactam) and co-
trimoxazole (sulfonamide) use in the children. In addition, cef-
triaxone and benzylpenicillin (both beta-lactams) and co-
trimoxazole are among the most commonly used antibiotics in
Zimbabwe69.

Increased antimicrobial use impacts the gut microbiota70,71

and is selective for AMR in populations72,73. The limited
association of the obtainable antimicrobial use data with
both the microbiome and resistome in the current study might
be surprising. However, a study by Dethlefsen et al.70 showed
that a majority of the bacterial community that was depleted
post-ciprofloxacin administration was restored after 4 weeks.
Our antimicrobial use data were limited to antibiotic use
within the immediate 6 months prior to sampling and was less
heterogeneous, thus any marked differences in the microbiota
may have been missed. Our findings are consistent with those
from recent studies on global sewage samples, which have
shown a much stronger association between socio-econo-
mic factors related to health, sanitation and education with
the resistome, compared to antimicrobial use55,74. This seems
more likely to be the case in low- and middle-income count-
ries, where a high contagion––the spread of resistant strains
and genes––between individuals may take place, and any
antimicrobial use in one individual may have general effects
on the population as a whole75. Thus, antimicrobial use
explains some, but not all variation in AMR genes in this
population72,73, and improving such socio-economic factors
may improve AMR.

Our study had a few limitations. The cross-sectional study
design allowed characterisation of the gut microbiome and its
relationship with S. haematobium infection at a single time point.
A longitudinal study will inform on the dynamic relationship
between the two, as well as the time course or developmental-
related trends in the observed profiles. A longitudinal study
would also give an indication of the dynamic features of the AMR
genes and how they are associated with individual-specific data.
Furthermore, relating the presence of AMR genes to measurable
phenotypic resistance of bacteria would give a stronger indication
of the clinical implications of the AMR genes present.

In conclusion, we characterised, through shotgun metagenomic
sequencing, the microbiome (to include the fungi repertoire) and
resistome in a preschool population (≤5 years old) in Zimbabwe.
We identified differences in the gut microbiome between schis-
tosome infected and uninfected children, showing largely an
increase in abundance of specific bacteria, and for the first time
(to our knowledge), fungi genera in infected children. This
association was independent of age, sex and village. Mechanistic
studies are required to further explain this relationship. To the
best of our knowledge, we also characterised for the first time in
this African preschool population, a diversity of AMR genes to
bacteria, belonging to various functional drug classes. Our
microbiome and resistome data add to publicly available data
from different human populations.

Methods
Ethical approval and consent. The current study is part of a larger paediatric
schistosomiasis study, for which ethical and institutional approval was obtained
from the Medical Research Council of Zimbabwe (MRCZ/A/1964) and the

Fig. 5 Overview of antimicrobial resistance (AMR) gene abundance and composition. From read mapping to the ResFinder database, AMR abundance
was calculated for each reference gene across all samples. Stacked bar charts show the most abundant (a) AMR gene and (b) drug class per sample,
proportional to the total AMR within each sample (n= 113 biologically independent samples). Charts were generated using gene length-normalised, zero-
corrected abundance. “-Other” represents abundance data for all other AMR genes or drug classes in the abundance data set.
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University of Edinburgh (fmutapi-0002), respectively. Permission to conduct the
study was obtained from the Mashonaland Central Provincial Medical Director.
The study aims and procedures were explained to all participants and their parents/
guardians in their local language, Shona. Written informed consent was obtained
from the participants’ parents/guardians and recruitment was voluntary with
participants free to withdraw from the study at any stage. For the current study,
only samples from participants who consented to be part of this sub-study
were used.

Study design, population and site. This cross-sectional study forms part of the
baseline survey of a larger study on paediatric schistosomiasis conducted in the
Shamva district, Northeast Zimbabwe, to compare the health benefits of early treat-
ment of schistosome infections in preschool-aged children, 6 months to 5 years old27.
In brief, children within this age group who were lifelong residents, and with no
history of tuberculosis, malaria/fever, or recent major illness/surgery were invited to
participate in the baseline survey and onward recruitment into the main cohort, if
they met further criteria of being negative for S. haematobium by egg count and had
no history of antihelminthic treatment. The study followed two groups of
schistosome-negative children for new infections and then compared re-infection
rates across two different regimens, following treatment of first schistosome infection.

For the current study, a subset of 116 stool samples (from 1–5 year olds) were
selected from the baseline survey for microbiome analysis. To be recruited as part
of this subset, participants had to consent for their stool samples to be used as part
of the current study. A questionnaire was administered at the time of recruitment
to gather metadata on socio-demography, growth and nutrition, and clinical
history. Clinical records were checked to obtain history of antibiotic use, within the
6 months preceding acquisition of stool samples. Parents/carers were also
interviewed to ascertain the health history of the children, and those who had any
such history were excluded. Children were tested via parasitological diagnosis for S.
mansoni and soil-transmitted helminths (STH) as part of the baseline survey and
none who were positive were included in the subset of 116 children in the current
study. The subset of children was thus selected based on (a) consent for
microbiome analysis, (b) availability of socio-demographic data, (c) availability of
parasitology samples (urine and stool samples), (d) availability of test results and
clinical history and (e) no current episode of diarrhoea (assessed by questionnaire
and visual stool examination).

Samples included in the current study were from two main sites, Mupfure and
Chihuri. The sites are located in the Mashonaland Central province, with 123,650
people living in a 99% rural area of 2695 km², according to the 2012 national
census76. The inhabitants are primarily subsistence farmers. The area has a high
prevalence of S. haematobium (>50%) with low prevalence of S. mansoni and STH
(<15%)77, making it ideal for studies on the impacts of urogenital schistosomiasis.

Sample size. The samples used in the current study are from the baseline survey of
a larger epidemiological study comparing re-infection rates across two different
treatment regimens. As this is a relatively new field in human helminthology, there
are limited published studies, with none focusing on the age group in the current
study, i.e. 1–5 year olds. Thus there were no published baseline data to inform
sample size calculations when we conducted our study. The sample size for the
current study was informed by our previous study35 and those of others34,39 in
older children with sample sizes ranging from 34–139, from which statistically
significant differences were detected in the microbiome of schistosome infected
versus uninfected children.

Sample collection, processing and DNA extraction. Urine and stool specimens
were collected for parasitological diagnosis of S. haematobium and intestinal hel-
minths, respectively. In summary, about 50 ml of urine sample was collected on
three successive days, and a single stool sample was collected on a single day from
each participant. Urine bags (Hollister 7511 U-Bag Urine Specimen Collector,
Hollister Inc., Chicago, IL, USA) and disposable diapers (for stool samples) were
used for sample collection in very young children. Urine samples were examined
microscopically for S. haematobium infection following the standard urine filtra-
tion method78, and stool samples examined microscopically using the Kato–Katz
method79, to exclude S. mansoni and STH (for at least one parasite egg detected).
Infection intensity for S. haematobium was defined as the arithmetic mean egg
count/10 ml of at least two urine samples collected on three consecutive days. All
children who were positive for schistosome infection were treated with a single
dose of praziquantel at the standard 40 mg/kg body weight, crushed and admi-
nistered with squash and sliced bread28 by local nurses.

Aliquots of stool samples in 2ml cryotubes were stored temporarily at 2–8 °C for a
maximum of 24 h prior to processing. For each stool sample, DNA was extracted
using the QIAamp DNA Stool Mini Kit (QIAGEN) according to the manufacturer’s
instructions. To ensure sample aliquots contained purified DNA, each sample was
quantified in-house at the University of Edinburgh using the Qubit fluorometer
(ThermoFisher Scientific) prior to shipment for DNA sequencing.

Library preparation and sequencing. DNA samples were shipped on dry ice for
library preparation and sequencing at the Beijing Genomics Institute (BGI,
Shenzhen, China). At BGI, DNA from the stool samples was quantified using the

Qubit fluorometer (ThermoFisher Scientific) and the NanoDropTM spectro-
photometer (ThermoFisher Scientific). As a quality control measure, the integrity
and purity of DNA was assessed by a 1% agarose gel electrophoresis, run at 150 V
for 40 min; DNA was sheared by ultrasonication into fragments (Covaris). Frag-
ments were mixed with End Repair mix (BGI) and purified using the QIAquick
PCR Purification Kit (Qiagen). Adapter-ligated DNA fragments were separated by
electrophoresis through a 2% agarose gel to recover the target fragments, and
purified using the QIAquick Gel Extraction kit (Qiagen). Library preparation to
enrich the adapter-ligated DNA was done via PCR amplification, size-separated by
electrophoresis, and purified using the QIAquick Gel Extraction kit (Qiagen). The
final library was quantified using the Agilent 2100 bioanalyzer. The qualifying 116
DNA libraries were amplified using the cBOT system (Illumina), and sequenced on
the Illumina Hiseq 4000 platform (Illumina) using paired-end 150-bp sequencing.

Bioinformatics processing: quality control and trimming. Raw FASTQ format
sequences from each sample were quality assessed using FASTQC v0.10.0 (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The number of read pairs
generated per sample ranged from 9,263,538 to 21,350,613 [Supplementary
Data 1]. Subsequently, reads were trimmed, to include removing adaptors, using
BBduk2 [BBMap—Bushnell B.—https://sourceforge.net/projects/bbmap/] with an
output quality Phred threshold score of ≥20 and a minimum read length of 50 bp.
K-mer length for finding contaminants was k= 19. We looked for shorter k-mers
at read pairs down to k= 11, and reads were trimmed at the right end [Supple-
mentary Data 1].

Bioinformatics processing: mapping of sequence reads. Using a novel reference
based mapping and alignment tool, k-mer alignment (KMA)80, the trimmed reads
were used as input to align directly against reference sequence databases. The KMA
method is designed to improve mapping against redundant databases, and has been
shown to outperform existing mapping methods in terms of speed, precision and
sensitivity80. In summary, KMA, employs heuristic mapping, which involves
directly mapping k-mers between query sequences and selected template databases,
including large redundant databases. It then speeds up mapping by using k-mer
seeding, and utilises a special version of the Needleman–Wunsch algorithm81 to
accurately align regions of mismatching k-mers. To ensure the best match template
for the query reads, multi-mapping reads are resolved using a novel sorting
scheme, ConClave. The scheme enables assembly of reads which results in a final
accurate consensus sequence for the reference sequence, and also rules out bias
associated with base calling across different sequencing platforms82.

Bioinformatics processing: microbiome sequence component. To access the
microbiome sequence component present in our samples, read pairs and singletons
were aligned to a custom reference genomic database (last updated 04.04.2019).
Mapped reads were counted as one copy, in cases of read pairs or singletons.
Unless otherwise specified below, databases were primarily downloaded via NCBI
GenBank clade specific assembly_summary.txt files (ftp://ftp.ncbi.nlm.nih.gov/
genomes/genbank). The custom database consisted of the following: bacteria
(closed genomes; downloaded 05.02.2019), archaea (downloaded 13.02.2019),
MetaHitAssembly (PRJEB674–PRJEB1046; downloaded 01.07.2014), HumanMi-
crobiome (genome assemblies; downloaded 02.07.2014), bacteria_draft (down-
loaded 05.02.2019), plasmid (downloaded 05.02.2019), virus (https://bitbucket.org/
genomicepidemiology/kvit_db; downloaded 05.02.2019; https://genome.jgi.doe.
gov/portal/pages/dynamicOrganismDownload.jsf?organism=IMG_VR; down-
loaded 28.01.2019), fungi (downloaded 13.02.2019), protozoa (downloaded
13.02.2019), and parasites (downloaded 04.04.2019). Sequences selected for the
bacteria and bacteria_draft databases from the assembly_summary.txt file were
annotated with the tags version_status= “latest” and genome_rep= “Full”. Addi-
tional entries, assembly_level= “Complete genome” or “Chromosome” in the
bacteria database and refseq_category= “representative genome” in the bacter-
ia_draft database were also required. The plasmid database was constructed as a
subset of the bacteria and bacteria_draft sequences; keyword in the FASTA entry
header line, “plasmid”. The total read count for each microbial community of
interest in a sample was calculated as the sum of read counts from each of the
databases of interest; bacteria (bacteria, bacteria_draft, MetaHitAssembly, and
HumanMicrobiome), fungi, protozoa, and parasites. Sequence mapping statistics
are shown in Supplementary Data 1.

The primary (most similar) alignment obtained for mapped sequences was used
to assign a putative taxonomy, based on the taxonID obtained. TaxonID’s and
associated taxonomy classifications were obtained from downloaded reference
microbial genomes from NCBI (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.
gz) and assignment at all taxonomic levels was done. Sequences that had no
similarities detected in the nucleotide (nt) database for which we could not assign a
putative taxonomic classification were deemed to be unknown sequences, and
hence termed “Unknown”. The classification of “unknown” is exquisitely time-
sensitive, but was appropriate and correct at the time of this analysis. Details of
taxonID mapping are shown in Supplementary Data 1.

Bioinformatics processing: AMR gene component. To identify any putative
AMR genes present in the samples, the read pairs were aligned to AMR genes (3081

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0859-7

8 COMMUNICATIONS BIOLOGY |           (2020) 3:155 | https://doi.org/10.1038/s42003-020-0859-7 | www.nature.com/commsbio

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://sourceforge.net/projects/bbmap/
https://bitbucket.org/genomicepidemiology/kvit_db
https://bitbucket.org/genomicepidemiology/kvit_db
https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=IMG_VR
https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=IMG_VR
www.nature.com/commsbio


genes) present in the ResFinder database (https://bitbucket.org/
genomicepidemiology/resfinder_db; downloaded 13.02.2019) with parameters set
for a query gene to cover at least 2/5 the length of the reference gene to be
selected83. Alignments were filtered to retain those exhibiting a selected threshold
of identity of 90% (i.e. >90% nucleotide identity between the query and reference
gene over at least 90% of the length of reference gene). Sequence mapping statistics
are shown in Supplementary Data 1.

Data handling and processing. To account for probable sample-wise sequencing
depth differences, as well as a size-dependent probability of observing a reference,
mapping counts from the custom genomic database and from the ResFinder
database were normalised to the total genome sizes for the genomic database and to
the individual gene lengths for the ResFinder database (gene and genome size
details in Supplementary Data 1).

The total observed mapping counts are relative, and may account for confounding
effects on downstream analyses84. This may be due to limitations of an arbitrary total
imposed by different sequencing platforms, technical variations in sequencing
libraries amounts, or even random variation85. To obtain information about the
abundances of features in our data set relative to each other, datasets were treated as
compositional85. Data were transformed using the log-ratio approach as introduced
by Aitchison86, to make the data symmetric, linear and in a log-ratio coordinate space.
However compositional methods such as this do not account for the presence of zeros
associated with abundance datasets. To address this, a small pseudocount of half the
smallest non-zero abundance per feature was added to each respective feature for all
the normalised abundance matrices, prior to transformations87. Microbiota
abundance data tables with counts, x, and k number of populations (taxa members),
were centred log ratio (clr) transformed, defined as87

clr x1; � � � ; xkð Þ ¼ log
x1
g xð Þ

 !
; � � � ; log

xk
g xð Þ
�� � !

;

where, g xð Þ ¼ Q
xið Þ1=k is the geometric mean of the particular composition.

AMR gene abundances were additive log-ratio (alr) transformed, taking the
bacterial component of the microbiome (xk) as the reference as87

alr x1; � � � ; xkð Þ ¼ log
x1
xk

� �
; � � � ; log

xk�1

xk

�� �� �
:

Unless otherwise stated, clr and alr matrices were used for all downstream
analyses. Raw mapping count data and their corresponding alr and clr values for
the analysed samples can be found in Supplementary Data 2.

Visualisation. Data visualisation was performed within the R environment (www.
bioconductor.org; www.r-project.org). Bar plots from normalised, zero-corrected
abundance matrices were used to give an overview of the microbiota and AMR
gene abundances across all samples. For cluster dendrograms, the Aitchison dis-
tance (Euclidean distance) was calculated using clr-transformed abundance data,
and samples clustered based on distances (complete-linkage-clustering). To explore
underlying variabilities in the microbiota and AMR genes across the data set, clr-
transformed abundance data for each matrix, centred on the geometric mean,
scaled by the total variance were ordinated using PCA87, based on eigenvectors and
eigenvalues88. The PCA involves using multivariate data reduction techniques
through linear combinations of variables (principal components), each of which
explains a percentage variation89. Box plots were used to highlight differences in
microbiota abundance between two groups, and scatter plots to show the rela-
tionship between schistosome infection intensity and microbiota abundance.

Statistics and reproducibility. Statistical analyses were performed using various
Bioconductor packages within the R environment (www.bioconductor.org; www.r-
project.org). To test whether sample-related metadata predict within-group dis-
persion of the microbiota and the AMR genes, the Euclidean distances were cal-
culated, using the R/Bioconductor package vegan90. The effect of such metadata on
sample dissimilarities were determined using permutational multivariate analysis of
variance (PERMANOVA; adonis2 function in the vegan package) using P < 0.05 as
the significance threshold. An FDR (Benjamini–Hochberg FDR) correction was
applied to counteract multiple testing91.

To investigate further how specific taxa composition vary across the statistically
significant metadata (from PERMOANOVA), while controlling for other variables
of interest, analysis of composition of microbiomes (ANCOM) was used92.
ANCOM was the preferred choice because it does not make any distributional
assumptions of the data. The algorithm computes log-ratios of raw count data (clr),
where the normalising reference value is the abundance of all remaining taxa, taken
one at a time. ANCOM uses bootstrapped intervals to perform hypotheses tests
while maintaining the Benjamini–Hochberg FDR set at 0.05 (ref. 91). A taxa
member was considered varying in composition across an independent variable of
interest when it varied across the independent variable of interest with respect to
80% of the rest of the taxa in the data set (W‐statistic cutoff: 0.80). By definition,
the W value generated (the number of times the null hypothesis is rejected for a
given taxonomic group) is the ratio of a specific taxonomic group and a number of
other groups (i.e. the W value) that are different across two groups. The ANCOM

test for the influence of S. haematobium infection was controlled for age, sex and
village.

As ANCOM only provides a list of taxa that vary in composition, the magnitude
and direction of associations of taxa that vary in composition across independent
variables was further determined. Box plots stratified by specific independent
variables, using the clr-transformed abundance data of taxa previously identified as
statistically significant by ANCOM were used to highlight differences in groups. To
determine how these taxa varied with schistosome infection intensity, clr-
transformed abundance data were regressed on the log transformed infection
intensity (log10 [egg count+ 1]).

The sample size used in the current study was based on availably of stool
samples from the subset of children who gave consent and met the required
selection criteria. Three samples were excluded from the overall analysis using a
predefined criteria. To appropriately explain variations in the data, samples with
non-missing data from at least one variable metadata from growth and nutritional
indices, schistosome infection status, previous schistosome treatment and antibiotic
use data (see Supplementary Data 1) were used for all downstream analysis (i.e.
n= 113). Duplicate samples collected from two participants were used as
biological/technical replicates for shotgun metagenomic sequencing.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw sequence data files from all 116 samples and associated metadata used in the current
study are deposited in the Sequence Read Archive (SRA) of the National Centre for
Biotechnology Information (NCBI) database under the BioProject accession number
PRJNA521455. In Supplementary Data 1, we present sample metadata and all summary
statistics generated from the analyses of sequence reads. The source data underlying
statistical analyses and figures are shown in Supplementary Data 2. All other data are
available on request to the corresponding author.

Code availability
The updated R codes used for analysis of composition of microbiomes (ANCOM) are
available on https://github.com/zellerlab/crc_meta/blob/master/src/ANCOM_updated.R
OR from the author’s webpage at https://sites.google.com/site/siddharthamandal1985/
research.

Received: 1 November 2019; Accepted: 25 February 2020;

References
1. Lukes, J., Stensvold, C. R., Jirku-Pomajbikova, K. & Wegener Parfrey, L. Are

human intestinal eukaryotes beneficial or commensals? PLoS Pathog. 11,
e1005039 (2015).

2. Human Microbiome Project Consortium. Structure, function and diversity of
the healthy human microbiome. Nature 486, 207–214 (2012).

3. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810
(2007).

4. Brewster, R. et al. Surveying gut microbiome research in Africans: toward
improved diversity and representation. Trends Microbiol. 27, 824–835
(2019).

5. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a
comparative study in children from Europe and rural Africa. Proc. Natl Acad.
Sci. USA 107, 14691–14696 (2010).

6. Rampelli, S. et al. Metagenome sequencing of the Hadza hunter-gatherer gut
microbiota. Curr. Biol. 25, 1682–1693 (2015).

7. Schnorr, S. L. et al. Gut microbiome of the Hadza hunter-gatherers. Nat.
Commun. 5, 3654 (2014).

8. Yatsunenko, T. et al. Human gut microbiome viewed across age and
geography. Nature 486, 222–227 (2012).

9. Robertson, R. C., Manges, A. R., Finlay, B. B. & Prendergast, A. J. The human
microbiome and child growth—first 1000 days and beyond. Trends Microbiol.
27, 131–147 (2019).

10. International HapMap, C. The International HapMap Project. Nature 426,
789–796 (2003).

11. Mulder, N. et al. H3Africa: current perspectives. Pharmgenomics Pers. Med.
11, 59–66 (2018).

12. Rodriguez, J. M. et al. The composition of the gut microbiota throughout
life, with an emphasis on early life. Micro. Ecol. Health Dis. 26, 26050
(2015).

13. Fan, W., Huo, G., Li, X., Yang, L. & Duan, C. Impact of diet in shaping gut
microbiota revealed by a comparative study in infants during the six months
of life. J. Microbiol. Biotechnol. 24, 133–143 (2014).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0859-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:155 | https://doi.org/10.1038/s42003-020-0859-7 | www.nature.com/commsbio 9

https://bitbucket.org/genomicepidemiology/resfinder_db
https://bitbucket.org/genomicepidemiology/resfinder_db
http://www.bioconductor.org
http://www.bioconductor.org
http://www.r-project.org
http://www.bioconductor.org
http://www.r-project.org
http://www.r-project.org
https://github.com/zellerlab/crc_meta/blob/master/src/ANCOM_updated.R
https://sites.google.com/site/siddharthamandal1985/research
https://sites.google.com/site/siddharthamandal1985/research
www.nature.com/commsbio
www.nature.com/commsbio


14. Senghor, B., Sokhna, C., Ruimy, R. & Lagier, J.-C. Gut microbiota diversity
according to dietary habits and geographical provenance. Hum. Microbiome J.
7, 1–9 (2018).

15. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159,
789–799 (2014).

16. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and
structure of the initial microbiota across multiple body habitats in newborns.
Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

17. Martinez, I. et al. The gut microbiota of rural papua new guineans:
composition, diversity patterns, and ecological processes. Cell Rep. 11,
527–538 (2015).

18. Mishra, P., Palma, M., Bleich, D., Loke, P. & Gause, W. Systemic impact of
intestinal helminth infections. Mucosal Immunol. 7, 753 (2014).

19. Bustinduy, A. L. et al. Impact of polyparasitic infections on anemia and
undernutrition among Kenyan children living in a Schistosoma haematobium-
endemic area. Am. J. Trop. Med. Hyg. 88, 433–440 (2013).

20. Mafiana, C. F., Ekpo, U. F. & Ojo, D. A. Urinary schistosomiasis in preschool
children in settlements around Oyan Reservoir in Ogun State, Nigeria:
implications for control. Trop. Med. Int. Health 8, 78–82 (2003).

21. Bosompem, K. M. et al. Infant schistosomiasis in Ghana: a survey in an
irrigation community. Trop. Med. Int. Health 9, 917–922 (2004).

22. McManus, D. P. et al. Schistosomiasis. Nat. Rev. Dis. Prim. 4, 13 (2018).
23. World Health Organization. Schistosomiasis, http://www.who.int/

mediacentre/factsheets/fs115/en/ (2016).
24. Pearce, E. J. & MacDonald, A. S. The immunobiology of schistosomiasis. Nat.

Rev. Immunol. 2, 499–511 (2002).
25. van Riet, E., Hartgers, F. C. & Yazdanbakhsh, M. Chronic helminth infections

induce immunomodulation: consequences and mechanisms. Immunobiology
212, 475–490 (2007).

26. Osakunor, D. N. M., Woolhouse, M. E. J. & Mutapi, F. Paediatric
schistosomiasis: what we know and what we need to know. PLoS Negl. Trop.
Dis. 12, e0006144 (2018).

27. Osakunor, D. N. M. et al. Dynamics of paediatric urogenital schistosome
infection, morbidity and treatment: a longitudinal study among preschool
children in Zimbabwe. BMJ Glob. Health 3, e000661 (2018).

28. WHO Expert Committee. Prevention and control of schistosomiasis and soil-
transmitted helminthiasis.World Health Organ Tech. Rep. Ser. 912, i–vi, 1–57,
back cover (2002).

29. Rosa, B. A. et al. Differential human gut microbiome assemblages during soil-
transmitted helminth infections in Indonesia and Liberia. Microbiome 6, 33
(2018).

30. Jenkins, T. P. et al. Infections by human gastrointestinal helminths are
associated with changes in faecal microbiota diversity and composition. PLoS
ONE 12, e0184719 (2017).

31. Cooper, P. et al. Patent human infections with the whipworm, Trichuris
trichiura, are not associated with alterations in the faecal microbiota. PLoS
ONE 8, e76573 (2013).

32. Holzscheiter, M. et al. Lack of host gut microbiota alters immune responses
and intestinal granuloma formation during schistosomiasis. Clin. Exp.
Immunol. 175, 246–257 (2014).

33. Broadhurst, M. J. et al. Therapeutic helminth infection of macaques with
idiopathic chronic diarrhea alters the inflammatory signature and mucosal
microbiota of the colon. PLoS Pathog. 8, e1003000 (2012).

34. Schneeberger, P. H. H. et al. Investigations on the interplays between
Schistosoma mansoni, praziquantel and the gut microbiome. Parasit. Vectors
11, 168 (2018).

35. Kay, G. L. et al. Differences in the faecal microbiome in Schistosoma
haematobium Infected children vs. uninfected children. PLoS Negl. Trop. Dis.
9, e0003861 (2015).

36. Jenkins, T. P. et al. Schistosoma mansoni infection is associated with quantitative
and qualitative modifications of the mammalian intestinal microbiota. Sci Rep.
UK 8, https://doi.org/10.1038/s41598-018-30412-x (2018).

37. Cheever, A. W., Kamel, I. A., Elwi, A. M., Mosimann, J. E. & Danner, R.
Schistosoma mansoni and S. haematobium infections in Egypt. II. Quantitative
parasitological findings at necropsy. Am. J. Trop. Med. Hyg. 26, 702–716
(1977).

38. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with
enhanced susceptibility to arthritis. Elife 2, e01202 (2013).

39. Ajibola, O. et al. Urogenital schistosomiasis is associated with signatures of
microbiome dysbiosis in Nigerian adolescents. Sci. Rep. UK 9, https://doi.org/
10.1038/s41598-018-36709-1 (2019).

40. Barnhill, A. E., Novozhilova, E., Day, T. A. & Carlson, S. A. Schistosoma-
associated Salmonella resist antibiotics via specific fimbrial attachments to the
flatworm. Parasit. Vectors 4, 123 (2011).

41. LoVerde, P. T., Amento, C. & Higashi, G. I. Parasite-parasite interaction of
Salmonella typhimurium and Schistosoma. J. Infect. Dis. 141, 177–185 (1980).

42. Qin, J. et al. A human gut microbial gene catalogue established by
metagenomic sequencing. Nature 464, 59–65 (2010).

43. Hu, Y. et al. Metagenome-wide analysis of antibiotic resistance genes in a large
cohort of human gut microbiota. Nat. Commun. 4, 2151 (2013).

44. Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term impacts of
antibiotic exposure on the human intestinal microbiota. Microbiology 156,
3216–3223 (2010).

45. De Waele, J. J. et al. Antimicrobial resistance and antibiotic stewardship
programs in the ICU: insistence and persistence in the fight against resistance.
A position statement from ESICM/ESCMID/WAAAR round table on multi-
drug resistance. Intensive Care Med. 44, 189–196 (2018).

46. Doron, S. & Davidson, L. E. Antimicrobial stewardship. Mayo Clin. Proc. 86,
1113–1123 (2011).

47. Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. Molecular
mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

48. Holmes, A. H. et al. Understanding the mechanisms and drivers of
antimicrobial resistance. Lancet 387, 176–187 (2016).

49. Woolhouse, M. E. & Ward, M. J. Microbiology. Sources of antimicrobial
resistance. Science 341, 1460–1461 (2013).

50. Wellington, E. M. et al. The role of the natural environment in the emergence
of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 13,
155–165 (2013).

51. Okeke, I. N. et al. Antimicrobial resistance in developing countries. Part I:
recent trends and current status. Lancet Infect. Dis. 5, 481–493 (2005).

52. MOH Malawi. Guidelines for Community-Based Management of Acute
Malnutrition (Ministry of Health, Lilongwe, Malawi, 2016).

53. Nordahl Petersen, T. et al. Meta-genomic analysis of toilet waste from long
distance flights; a step towards global surveillance of infectious diseases and
antimicrobial resistance. Sci. Rep. 5, 11444 (2015).

54. Afshinnekoo, E. et al. Geospatial resolution of human and bacterial diversity
with city-scale metagenomics. Cell Syst. 1, 72–87 (2015).

55. Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on
metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

56. Deschasaux, M. et al. Depicting the composition of gut microbiota in a
population with varied ethnic origins but shared geography. Nat. Med. 24,
1526–1531 (2018).

57. Gorvitovskaia, A., Holmes, S. P. & Huse, S. M. Interpreting Prevotella and
Bacteroides as biomarkers of diet and lifestyle. Microbiome 4, 15 (2016).

58. Hoffmann, C. et al. Archaea and fungi of the human gut microbiome:
correlations with diet and bacterial residents. PLoS ONE 8, e66019 (2013).

59. Yassour, M. et al. Natural history of the infant gut microbiome and impact of
antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med.
8, 343ra381 (2016).

60. Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: microbial signature of
dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

61. Gouba, N., Raoult, D. & Drancourt, M. Eukaryote culturomics of the gut
reveals new species. PLoS ONE 9, e106994 (2014).

62. Gouba, N. & Drancourt, M. Digestive tract mycobiota: a source of infection.
Med Mal. Infect. 45, 9–16 (2015).

63. Mukherjee, P. K. et al. Oral mycobiome analysis of HIV-infected patients:
identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathog.
10, e1003996 (2014).

64. Mar Rodriguez, M. et al. Obesity changes the human gut mycobiome. Sci. Rep.
5, 14600 (2015).

65. Wheeler, M. L. et al. Immunological consequences of intestinal fungal
dysbiosis. Cell Host Microbe 19, 865–873 (2016).

66. Bukelskienė, V., Baltriukienė, D. & Repečkienė, J. Study of health risks
associated with Aspergillus amstelodami and its mycotoxic effects. Ekologija, 3,
42–47 (2006).

67. Leung, J. M. & Loke, P. A role for IL-22 in the relationship between intestinal
helminths, gut microbiota and mucosal immunity. Int. J. Parasitol. 43,
253–257 (2013).

68. Frank, T., Gautier, V., Talarmin, A., Bercion, R. & Arlet, G. Characterization
of sulphonamide resistance genes and class 1 integron gene cassettes in
Enterobacteriaceae, Central African Republic (CAR). J. Antimicrob.
Chemother. 59, 742–745 (2007).

69. Zimbabwe National Antimicrobial Resistance Core Group. Situation Analysis
of Antimicrobial Use and Resistance in Humans and Animals in Zimbabwe
(Global Antibiotic Resistance Partnership (GARP), Action on ANtibiotic
Resistance (REACT), Zimbabwe, 2017).

70. Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of
an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA
sequencing. PLoS Biol. 6, e280 (2008).

71. Bartosch, S., Fite, A., Macfarlane, G. T. & McMurdo, M. E. Characterization of
bacterial communities in feces from healthy elderly volunteers and
hospitalized elderly patients by using real-time PCR and effects of antibiotic
treatment on the fecal microbiota. Appl. Environ. Microbiol. 70, 3575–3581
(2004).

72. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance.
Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0859-7

10 COMMUNICATIONS BIOLOGY |           (2020) 3:155 | https://doi.org/10.1038/s42003-020-0859-7 | www.nature.com/commsbio

http://www.who.int/mediacentre/factsheets/fs115/en/
http://www.who.int/mediacentre/factsheets/fs115/en/
https://doi.org/10.1038/s41598-018-30412-x
https://doi.org/10.1038/s41598-018-36709-1
https://doi.org/10.1038/s41598-018-36709-1
www.nature.com/commsbio


73. Van De Sande-Bruinsma, N. et al. Antimicrobial drug use and resistance in
Europe. Emerg. Infect. Dis. 14, 1722 (2008).

74. Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. & Laxminarayan, R.
Anthropological and socioeconomic factors contributing to global
antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet
Health 2, e398–e405 (2018).

75. Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-
income human habitats. Nature 533, 212–216 (2016).

76. Zimbabwe National Statistics Agency. Zimbabwe Population Census 2012,
http://www.zimstat.co.zw/sites/default/files/img/publications/Population/
National_Report.pdf (2012).

77. Midzi, N. et al. Distribution of schistosomiasis and soil transmitted
helminthiasis in Zimbabwe: towards a national plan of action for control and
elimination. PLoS Negl. Trop. Dis. 8, e3014 (2014).

78. Mott, K. E., Baltes, R., Bambagha, J. & Baldassini, B. Field studies of a reusable
polyamide filter for detection of Schistosoma haematobium eggs by urine
filtration. Tropenmed. Parasitol. 33, 227–228 (1982).

79. Katz, N., Chaves, A. & Pellegrino, J. A simple device for quantitative stool
thick-smear technique in Schistosomiasis mansoni. Rev. Inst. Med. Trop. Sao
Paulo 14, 397–400 (1972).

80. Clausen, P., Aarestrup, F. M. & Lund, O. Rapid and precise alignment of raw
reads against redundant databases with KMA. BMC Bioinformatics 19, 307
(2018).

81. Needleman, S. B. & Wunsch, C. D. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48,
443–453 (1970).

82. Kaas, R. S., Leekitcharoenphon, P., Aarestrup, F. M. & Lund, O. Solving the
problem of comparing whole bacterial genomes across different sequencing
platforms. PLoS ONE 9, e104984 (2014).

83. Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J.
Antimicrob. Chemother. 67, 2640–2644 (2012).

84. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome
data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

85. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J.
Microbiome datasets are compositional: and this is not optional. Front.
Microbiol. 8, 2224 (2017).

86. Aitchison, J. The Statistical Analysis of Compositional Data (Chapman and
Hall, 1986).

87. Calle, M. L. Statistical analysis of metagenomics data. Genomics Inf. 17, e6
(2019).

88. Arfken, G. in Mathematical Methods for Physicists (ed George Arfken) 229–
237 (Academic Press, 1985).

89. Le Cao, K. A. et al. MixMC: a multivariate statistical framework to gain insight
into microbial communities. PLoS ONE 11, e0160169 (2016).

90. Oksanen, J. et al. Community Ecology Package, https://CRAN.R-project.org/
package=vegan (2016).

91. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300
(1995).

92. Mandal, S. et al. Analysis of composition of microbiomes: a novel method for
studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).

Acknowledgements
We thank the local nurses, village health workers and community nurses for their help
with the fieldwork. Special thanks to all study participants and their parents/guar-

dians. We also thank members of the Understanding Bilharzia project in Zimbabwe
for their technical help, and all the members of the Parasite Immuno-epidemiology
Group at the University of Edinburgh for their useful comments in shaping this
manuscript. Our research is supported by the Thrasher Research Fund 12440, Well-
come Trust 108061/Z/15/Z, and the Oak Foundation. This research was
commissioned in part by the National Institute for Health Research (NIHR) Global
Health Research programme (16/136/33) using UK aid from the UK Government. The
views expressed in this publication are those of the author(s) and not necessarily those
of the NIHR or the Department of Health and Social Care. D.N.M.O. is supported by
the Darwin Trust of Edinburgh. C.B., T.N.P., P.M., and F.M.A. are funded by the Novo
Nordisk Foundation (NNF16OC0021856: Global Surveillance of Antimicrobial
Resistance).

Author contributions
D.N.M.O., T.M., F.M.A., M.E.J.W. and F.M. conceptualised and designed the study.
D.N.M.O., T.M., T.C., S.A.A., J.M. and F.M. were involved in the fieldwork, sample
collection and DNA extractions. D.N.M.O. and T.C., curated the field data. D.N.M.O.,
J.M. and F.M. organised the sequencing. T.N.P. and A.I. carried out the bioinfor-
matics processing. D.N.M.O., P.M., T.N.P., C.B. and A.I. analysed, produced
figures and interpreted the data. D.N.M.O. prepared the draft manuscript and all
authors were involved in review, editing and approval of the final version of the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s42003-
020-0859-7.

Correspondence and requests for materials should be addressed to D.N.M.O.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0859-7 ARTICLE

COMMUNICATIONS BIOLOGY |           (2020) 3:155 | https://doi.org/10.1038/s42003-020-0859-7 | www.nature.com/commsbio 11

http://www.zimstat.co.zw/sites/default/files/img/publications/Population/National_Report.pdf
http://www.zimstat.co.zw/sites/default/files/img/publications/Population/National_Report.pdf
https://CRAN.R-project.org/package=vegan
https://CRAN.R-project.org/package=vegan
https://doi.org/10.1038/s42003-020-0859-7
https://doi.org/10.1038/s42003-020-0859-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	The gut microbiome but not the resistome is associated with urogenital schistosomiasis in preschool-aged children
	Results
	Population characteristics
	Taxonomic composition of the microbiome
	Variation in the microbiome and association with sample metadata
	Different genera by schistosome infection status and intensity
	AMR gene characterisation
	Variation in the resistome and association with sample metadata

	Discussion
	Methods
	Ethical approval and consent
	Study design, population and site
	Sample size
	Sample collection, processing and DNA extraction
	Library preparation and sequencing
	Bioinformatics processing: quality control and trimming
	Bioinformatics processing: mapping of sequence reads
	Bioinformatics processing: microbiome sequence component
	Bioinformatics processing: AMR gene component
	Data handling and processing
	Visualisation
	Statistics and reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




