36 research outputs found

    An estimation of long endurance power supply system for a rotary wing unmanned aerial vehicle

    Get PDF
    The vast applications of unmanned aerial vehicle (UAV) have made it versatile. However, this battery powered vehicle has a short flight time thereby limiting its performance. Therefore, this paper represents the analysis of two power systems to obtain a better performing system with longer duration. Thus, to obtain a long endurance power system, the regular battery was compared to the tethering mechanism power supplier. The power utilized by the two systems differed, hence, the performance parameters were compared to obtain feasibility of the system. Both the theoretical and experimental parameters were evaluated to estimate the accuracy. The comparative experiments would help to implement better device for the tethering mechanism to increase its efficiency and comprehend its durability

    Two Party Non-Local Games

    Full text link
    In this work we have introduced two party games with respective winning conditions. One cannot win these games deterministically in the classical world if they are not allowed to communicate at any stage of the game. Interestingly we find out that in quantum world, these winning conditions can be achieved if the players share an entangled state. We also introduced a game which is impossible to win if the players are not allowed to communicate in classical world (both probabilistically and deterministically), yet there exists a perfect quantum strategy by following which, one can attain the winning condition of the game.Comment: Accepted in International Journal of Theoretical Physic

    Hawking Radiation as Tunneling for Extremal and Rotating Black Holes

    Full text link
    The issue concerning semi-classical methods recently developed in deriving the conditions for Hawking radiation as tunneling, is revisited and applied also to rotating black hole solutions as well as to the extremal cases. It is noticed how the tunneling method fixes the temperature of extremal black hole to be zero, unlike the Euclidean regularity method that allows an arbitrary compactification period. A comparison with other approaches is presented.Comment: 17 pages, Latex document, typos corrected, four more references, improved discussion in section

    Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric

    Full text link
    In case of spacetimes with single horizon, there exist several well-established procedures for relating the surface gravity of the horizon to a thermodynamic temperature. Such procedures, however, cannot be extended in a straightforward manner when a spacetime has multiple horizons. In particular, it is not clear whether there exists a notion of global temperature characterizing the multi-horizon spacetimes. We examine the conditions under which a global temperature can exist for a spacetime with two horizons using the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically extend different procedures (like the expectation value of stress tensor, response of particle detectors, periodicity in the Euclidean time etc.) for identifying a temperature in the case of spacetimes with single horizon to the SDS spacetime. This analysis is facilitated by using a global coordinate chart which covers the entire SDS manifold. We find that all the procedures lead to a consistent picture characterized by the following features: (a) In general, SDS spacetime behaves like a non-equilibrium system characterized by two temperatures. (b) It is not possible to associate a global temperature with SDS spacetime except when the ratio of the two surface gravities is rational (c) Even when the ratio of the two surface gravities is rational, the thermal nature depends on the coordinate chart used. There exists a global coordinate chart in which there is global equilibrium temperature while there exist other charts in which SDS behaves as though it has two different temperatures. The coordinate dependence of the thermal nature is reminiscent of the flat spacetime in Minkowski and Rindler coordinate charts. The implications are discussed.Comment: 12 page

    Inflationary Attractor from Tachyonic Matter

    Full text link
    We study the complete evolution of a flat and homogeneous universe dominated by tachyonic matter. We demonstrate the attractor behaviour of the tachyonic inflation using the Hamilton-Jacobi formalism. We else obtain analytical approximations to the trajectories of the tachyon field in different regions. The numerical calculation shows that an initial non-vanishing momentum does not prevent the onset of inflation. The slow-rolling solution is an attractor.Comment: 4 pages, 2 figures, RevTe

    Tachyonic Inflation in a Warped String Background

    Full text link
    We analyze observational constraints on the parameter space of tachyonic inflation with a Gaussian potential and discuss some predictions of this scenario. As was shown by Kofman and Linde, it is extremely problematic to achieve the required range of parameters in conventional string compactifications. We investigate if the situation can be improved in more general compactifications with a warped metric and varying dilaton. The simplest examples are the warped throat geometries that arise in the vicinity of of a large number of space-filling D-branes. We find that the parameter range for inflation can be accommodated in the background of D6-branes wrapping a three-cycle in type IIA. We comment on the requirements that have to be met in order to realize this scenario in an explicit string compactification.Comment: Latex, JHEP class, 20 pages, 4 figures. v2: references added, small error in section 7 corrected, published versio

    Absorption and quasinormal modes of classical fields propagating on 3D and 4D de Sitter spacetime

    Get PDF
    We extensively study the exact solutions of the massless Dirac equation in 3D de Sitter spacetime that we published recently. Using the Newman-Penrose formalism, we find exact solutions of the equations of motion for the massless classical fields of spin s=1/2,1,2 and to the massive Dirac equation in 4D de Sitter metric. Employing these solutions, we analyze the absorption by the cosmological horizon and de Sitter quasinormal modes. We also comment on the results given by other authors.Comment: 31 page

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury

    Get PDF
    A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research
    corecore