99 research outputs found

    Emergence of neuronal diversity from patterning of telencephalic progenitors.

    Get PDF
    During central nervous system (CNS) development, hundreds of distinct neuronal subtypes are generated from a single layer of multipotent neuroepithelial progenitor cells. Within the rostral CNS, initial regionalization of the telencephalon marks the territories where the cerebral cortex and the basal ganglia originate. Subsequent refinement of the primary structures determines the formation of domains of differential gene expression, where distinct fate-restricted progenitors are located. To understand how diversification of neural progenitors and neurons is achieved in the telencephalon, it is important to address early and late patterning events in this context. In particular, important questions include: How does the telencephalon become specified and regionalized along the major spatial axes? Within each region, are the differences in neuronal subtypes established at the progenitor level or at the postmitotic stage? If distinct progenitors exist that are committed to subtype-specific neuronal lineages, how does the diversification emerge? What is the contribution of positional and temporal cues and how is this information integrated into the intrinsic programs of cell identity? WIREs For further resources related to this article, please visit the WIREs website.This work was supported by Medical Research Council (MRC) grants G0700758 and MR/K018329/1 and Doctoral Training Award (LH); RA is supported by an MRC postdoctoral fellowship.This is the accepted manuscript. The final version is available from Wiley at http://onlinelibrary.wiley.com/doi/10.1002/wdev.174/abstract

    FGF-2 Deficiency Does Not Influence FGF Ligand and Receptor Expression during Development of the Nigrostriatal System

    Get PDF
    Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in dissociated E11.5 VM cell cultures, however, such a continuous exposure had no influence on the yield of dopaminergic neurons in vitro

    Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues

    Get PDF
    To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell β€œoutput” along the body axis by integration of local anteroposterior and temporal cues

    Clinical and laboratory diagnosis of spinocerebellar ataxia type 3 in a large Chinese family

    No full text

    Patterning of frontal cortex subdivisions by Fgf17

    No full text
    • …
    corecore