656 research outputs found

    D-wave-like nodal superconductivity in the organic conductor (TMTSF)2ClO4

    Full text link
    We suggest theoretical explanation of the high upper critical magnetic field, perpendicular to conducting chains, Hc2, experimentally observed in the superconductor (TMTSF)2ClO4, in terms of singlet superconducting pairing. In particular, we compare the results of d-wave-like nodal, d-wave-like node-less, and s-wave scenarios of superconductivity. We show that, in d-wave-like nodal scenario, superconductivity can naturally exceed both the orbital upper critical magnetic field and Clogston-Shandrasekhar paramagnetic limit as well as reach experimental value, Hc2 = 6T, in contrast to d-wave-like node-less and s-wave scenarios. In our opinion, the obtained results are strongly in favor of d-wave-like nodal superconductivity in (TMTSF)2ClO4, whereas, in a sister compound, (TMTSF)2PF6, we expect either the existence of triplet order parameter or the coexistence of triplet and singlet order parameters.Comment: Talk at the ECRYS-2011 international conferenc

    Triplet superconductivity in a one-dimensional ferromagnetic t-J model

    Full text link
    In this paper we study the ground state phase diagram of a one-dimensional tUJt-U-J model, at half-filling. In the large-bandwidth limit and for ferromagnetic exchange with easy-plane anisotropy, a phase with gapless charge and massive spin excitations, characterized by the coexistence of triplet superconducting (TSTS) and spin density wave (SDWzSDW^{z}) instabilities is realized in the ground state. With reduction of the bandwidth, a transition into an insulating phase showing properties of the spin-1/2 XY model takes place. In the case of weakly anisotropic antiferromagnetic exchange the system shows a long range dimerized (Peierls) ordering in the ground state. The complete weak-coupling phase diagram of the model, including effects of the on-site Hubbard interaction, is obtained

    Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grapes (<it>Vitis vinifera </it>L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses.</p> <p>Results</p> <p>Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through <it>véraison </it>and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen<sup>® </sup>genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using <sup>1</sup>H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening.</p> <p>Conclusions</p> <p>Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.</p

    Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)_2 X

    Full text link
    We argue that (TMTSF)_2 PF_6 compound under pressure is likely a triplet superconductor with a vector order parameter d(k) \equiv (d_a(k) \neq 0, d_c(k) = ?, d_{b'}(k) = 0); |d_a(k)| > |d_c(k)|. It corresponds to an anisotropic spin susceptibility at T=0: \chi_{b'} = \chi_0, \chi_a \ll \chi_0, where \chi_0 is its value in a metallic phase. [The spin quantization axis, z, is parallel to a so-called b'-axis]. We show that the suggested order parameter explains why the upper critical field along the b'-axis exceeds all paramagnetic limiting fields, including that for a nonuniform superconducting state, whereas the upper critical field along the a-axis (a \perp b') is limited by the Pauli paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in agreement with the recent Knight shift measurements by I. J. Lee et al. as well as with the early results on a destruction of superconductivity by nonmagnetic impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation rate.Comment: 4 pages, 1 eps figur

    Machine Learning Methods Enable Predictive Modeling of Antibody Feature:Function Relationships in RV144 Vaccinees

    Get PDF
    The adaptive immune response to vaccination or infection can lead to the production of specific antibodies to neutralize the pathogen or recruit innate immune effector cells for help. The non-neutralizing role of antibodies in stimulating effector cell responses may have been a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive investigation of a rich set of data collected from RV144 vaccine recipients, we here employ machine learning methods to identify and model associations between antibody features (IgG subclass and antigen specificity) and effector function activities (antibody dependent cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via cross-validation that classification and regression approaches can effectively use the antibody features to robustly predict qualitative and quantitative functional outcomes. This integration of antibody feature and function data within a machine learning framework provides a new, objective approach to discovering and assessing multivariate immune correlates.U.S. Military HIV Research ProgramCollaboration for AIDS Vaccine Discover (OPP1032817)National Institutes of Health (U.S.) (3R01AI080289-02S1)National Institutes of Health (U.S.) (5R01AI080289-03)United States. Army Medical Research and Materiel Command (National Institute of Allergy and Infectious Diseases (U.S.) Interagency Agreement Y1-AI-2642-12)Henry M. Jackson Foundation for the Advancement of Military Medicine (U.S.) (United States. Dept. of Defense Cooperative Agreement W81XWH-07-2-0067

    Chordin Is a Modifier of Tbx1 for the Craniofacial Malformations of 22q11 Deletion Syndrome Phenotypes in Mouse

    Get PDF
    Point mutations in TBX1 can recapitulate many of the structural defects of 22q11 deletion syndromes (22q11DS), usually associated with a chromosomal deletion at 22q1.2. 22q11DS often includes specific cardiac and pharyngeal organ anomalies, but the presence of characteristic craniofacial defects is highly variable. Even among family members with a single TBX1 point mutation but no cytological deletion, cleft palate and low-set ears may or may not be present. In theory, such differences could depend on an unidentified, second-site lesion that modifies the craniofacial consequences of TBX1 deficiency. We present evidence for such a locus in a mouse model. Null mutations of chordin have been reported to cause severe defects recapitulating 22q11DS, which we show are highly dependent on genetic background. In an inbred strain in which chordin−/− is fully penetrant, we found a closely linked, strong modifier—a mutation in a Tbx1 intron causing severe splicing defects. Without it, lack of chordin results in a low penetrance of mandibular hypoplasia but no cardiac or thoracic organ malformations. This hypomorphic Tbx1 allele per se results in defects resembling 22q11DS but with a low penetrance of hallmark craniofacial malformations, unless chordin is mutant. Thus, chordin is a modifier for the craniofacial anomalies of Tbx1 mutations, demonstrating the existence of a second-site modifier for a specific subset of the phenotypes associated with 22q11DS

    Magneto-Optical Relaxation Measurements of Functionalized Nanoparticles as a Novel Biosensor

    Get PDF
    Measurements of magneto-optical relaxation signals of magnetic nanoparticles functionalized with biomolecules are a novel biosensing tool. Upon transmission of a laser beam through a nanoparticle suspension in a pulsed magnetic field, the properties of the laser beam change. This can be detected by optical methods. Biomolecular binding events leading to aggregation of nanoparticles are ascertainable by calculating the relaxation time and from this, the hydrodynamic diameters of the involved particles from the optical signal. Interaction between insulin-like growth factor 1 (IGF-1) and its antibody was utilized for demonstration of the measurement setup applicability as an immunoassay. Furthermore, a formerly developed kinetic model was utilized in order to determine kinetic parameters of the interaction. Beside utilization of the method as an immunoassay it can be applied for the characterization of diverse magnetic nanoparticles regarding their size and size distribution

    Did BP Atone for its Transgressions? Expanding Theory on 'Ethical Apology' in Crisis Communication

    Get PDF
    © 2016 John Wiley & Sons Ltd. Ethical communication during crisis response is often assessed by external perceptions of the organization's intentions, rather than an assessment of the organization's communicative behaviors. This can easily lead researchers to draw editorial conclusions about an organization's ethics in crisis response rather than accurately describing its communicative behaviors. The case of BP's 2010 oil spill in the Gulf of Mexico provides a prime example for the importance of accurately assessing the ethical content of an organization's crisis response because the ethics of BP's response have been discussed in news and academic sources; yet little direct examination of the ethical content in BP's response has occurred. The findings have implications for communication ethics, social media engagement, and crisis communication more generally
    corecore