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Abstract
The adaptive immune response to vaccination or infection can lead to the production of spe-

cific antibodies to neutralize the pathogen or recruit innate immune effector cells for help.

The non-neutralizing role of antibodies in stimulating effector cell responses may have been

a key mechanism of the protection observed in the RV144 HIV vaccine trial. In an extensive

investigation of a rich set of data collected from RV144 vaccine recipients, we here employ

machine learning methods to identify and model associations between antibody features

(IgG subclass and antigen specificity) and effector function activities (antibody dependent

cellular phagocytosis, cellular cytotoxicity, and cytokine release). We demonstrate via

cross-validation that classification and regression approaches can effectively use the anti-

body features to robustly predict qualitative and quantitative functional outcomes. This inte-

gration of antibody feature and function data within a machine learning framework provides

a new, objective approach to discovering and assessing multivariate immune correlates.

Author Summary

Antibodies are one of the central mechanisms that the human immune system uses to
eliminate infection: an antibody can recognize a pathogen or infected cell using its Fab re-
gion while recruiting additional immune cells through its Fc that help destroy the offender.
This mechanism may have been key to the reduced risk of infection observed among some
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of the vaccine recipients in the RV144 HIV vaccine trial. In order to gain insights into the
properties of antibodies that support recruitment of effective functional responses, we de-
veloped and applied a machine learning-based framework to find and model associations
among properties of antibodies and corresponding functional responses in a large set of
data collected from RV144 vaccine recipients. We characterized specific important rela-
tionships between antibody properties and functional responses, and demonstrated that
models trained to encapsulate relationships in some subjects were able to robustly predict
the quality of the functional responses of other subjects. The ability to understand and
build predictive models of these relationships is of general interest to studies of the anti-
body response to vaccination and infection, and may ultimately lead to the development
of vaccines that will better steer the immune system to produce antibodies with
beneficial activities.

Introduction
Antibodies provide the correlate of protection for most vaccines [1]. This correlation is often
thought to be mechanistic, as in numerous disease settings passively transferred antibodies pro-
vide protection from infection [2]. Yet, the fact that some vaccines that induce an antibody re-
sponse do not provide protection indicates that beyond presence and prevalence, there are
specific antibody features associated with protection: that is, not all antibodies are created
equal. Efforts to develop a protective HIV vaccine may represent the setting in which the dis-
crepancy between the generation of a robust humoral immune response and generation of pro-
tective humoral immunity has been most apparent. That this might be a more general
observation is suggested by recent dengue vaccine trials, where protection was seen but did not
appear to correlate with the well-established virus neutralization assay [3,4].

The significant challenges to inducing antibodies with potent anti-HIV activity have been
well described [5]. Due to viral diversity, vaccine-specific antibodies may or may not recognize
circulating viral strains [6]. Furthermore, beyond viral recognition, binding antibodies vary
considerably in their ability to neutralize diverse viral variants (case studies in [7,8] and re-
viewed in [9]), with most antibodies possessing weak and/or narrow neutralization activity
[10]. While generating broadly neutralizing antibodies represents a cornerstone of HIV vaccine
efforts, as these antibodies clearly block infection in animal models [11], vaccines tested thus
far have induced antibodies with only a limited ability to neutralize viral infectivity [12]. How-
ever, beyond this role in the direct blockade of viral entry, antibodies mediate a remarkable rep-
ertoire of protective activities through their ability to recruit the antiviral activity of innate
immune effector cells. Yet, here as well, the ability of HIV-specific antibodies to act as molecu-
lar beacons to clear virus or virus-infected cells is also widely divergent [13].

Given the diversity of viral variants, the diversity of antibody binding and neutralization
profiles driven by the IgG variable (Fv) domain, and the diversity of antibody effector activity
driven by the IgG constant (Fc) domain, the landscape of antibody activity is perplexingly com-
plex. While a number of structure:function relationships have been characterized in terms of
virus recognition, neutralization, and innate immune recruiting capacity, our understanding of
the relationship between antibody features and their protective functions remains incomplete.
However, the recent development of high-throughput methods to assess properties of both an-
tigen recognition and innate immune recognition [14] offers more fine-grained information
about the antibody response, which could feed into the development of models to inform our
understanding of antibody activity.
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The moderate success of the RV144 HIV vaccine trial, in which partial protection from in-
fection was observed [15], presents the opportunity to study antibody structure:function rela-
tionships in the first HIV vaccine to demonstrate efficacy. Importantly, within this trial, the
correlates of reduced risk of infection were binding antibodies, and, in the absence of an IgA
response, antibody function, in the form of natural killer (NK) cell-mediated antibody-
dependent cellular cytotoxity [16]. Subsequent analysis has supported these findings: with evi-
dence of the impact of variable domain-specific antibodies apparent in the sequences of break-
through infections [17], and antibodies of the IgG3 subclass associated with reduced risk of
infection [18]. Because the vaccine was partially efficacious, studying the diversity of antibody
responses among volunteers has the potential to help identify novel immune correlates. Thus,
this trial represents a compelling opportunity to profile antibody structure:function relation-
ships from the standpoint of relevance to protection and an excellent setting in which to apply
machine learning methods to characterize the relationship between antibody features and func-
tion in a population whose response to vaccination varied in a clinically relevant way.

Here, we study the relationships between biophysical data regarding HIV-specific antibod-
ies induced by the RV144 vaccine regimen, and corresponding functional properties that have
previously been correlated with better clinical outcomes in HIV infected subjects [19–21] as
well as the protection observed in RV144. These effector functions are mediated by the com-
bined ability of an antibody’s Fab to interact with the antigen and its Fc to interact with a set of
FcR expressed on innate immune cells. Just as Fab variation impacts antigen recognition, Fc
variation in IgG subclass dramatically influences FcR recognition, and antibody effector func-
tion is widely divergent among antibodies from different subject groups in ways that are not ex-
plained by titer, or the magnitude of the humoral response [22]. Therefore, we characterize the
combination of antigen specificity and subclass in a multiplexed fashion (“antibody features”),
and couple that characterization with assessments of effector activities from cell-based assays
(“antibody functions”). This antibody feature and function data have previously been subjected
to univariate correlation analysis, which identified associations between gp120-specific
IgG3-subclass antibodies and coordinated functional responses in RV144 subjects. Conversely
IgG2- and IgG4-subclass antibodies were associated with decreased activity, and subsequent
depletion studies confirmed these discoveries [23].

In order to discover and model multivariate antibody feature: function relationships in data
from RV144 vaccinees, we employ a representative set of different machine learning methodol-
ogies, within a cross-validation setting that assesses their ability to make predictions for sub-
jects not used in model development. While “predict” often connotes prospective evaluation,
here, as is standard in statistical machine learning, it means only that models are trained with
data for some subjects and are subsequently applied to other subjects in order to forecast un-
known quantities from known quantities. In particular, we show that not only are antibody fea-
tures correlated with effector functions, but that computational models trained on feature:
function relationships for some subjects can make predictions regarding the functional activi-
ties of other subjects based on their antibody features. Using unsupervised methods we find
patterns of relationships between antibody features and effector functions as well as among fea-
tures themselves. Then, using classification methods we demonstrate via cross-validation that
antibody features support robust qualitative predictions of high vs. low function, and using re-
gression methods we likewise demonstrate that the features can enable quantitative predictions
of functionality across multiple, divergent activities. The various methodologies are relatively
consistent in both performance and identified features, giving confidence in the general proce-
dure and the information content in the data. This objective approach to developing predictive
models based on patterns of antibody features provides a powerful new way to uncover and uti-
lize novel structure:function relationships.

Predicting Antibody Function in RV144
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Results
To model antibody feature-function relationships we analyzed samples from 100 subjects in
the RV144 trial. A set of 3 different cell-based assays was conducted to characterize the func-
tional activity of these samples, providing data regarding the effector function of antibodies in-
duced by RV144 including: gp120-specific antibody dependent cellular phagocytosis (ADCP)
by monocytes [24], antibody dependent cellular cytotoxicity (ADCC) by primary NK cells
[25], and NK cell cytokine release (namely the combination of IFNγ, MIP-1β, and CD107a)
[23]. Antibody features were assessed using a customized microsphere array [14] to character-
ize the antibodies induced by the vaccine in terms of their antigen specificity (gp140, gp120,
V1V2, gp41, and p24) and IgG subclass (IgG1, IgG2, IgG3, and IgG4). For both the array-
generated antibody feature data, and cell-based assay assessment of antibody functional activi-
ty, excellent discrimination between placebo (n = 20) and vaccinated (n = 80) subjects was ob-
served [23]. The dataset is provided as a spreadsheet (S1 Dataset).

Fig 1 illustrates scaled and centered data for each antibody feature (Fig 1A) and functional
measurement (Fig 1B) for the 80 vaccinated subjects. We note that the subsequent analyses all
use scaled and centered feature data, as the different features are on different and somewhat ar-
bitrary scales according to bead set and detection reagent, and this standardization enables
combination of the relative feature levels across these different scales. As a linear transforma-
tion, the standardization does not affect linear models, though the additional preprocessing
truncation to 6σ has an appropriate impact on outliers. The function data are only standard-
ized for this visualization, as the assay values are meaningful for interpreting predictions.

As discussed in the introduction, the data and correlation analyses have been previously
presented [23]; we recapitulate the most relevant points here to lead into our machine learning
approaches. We observe that the antibody features and functions are far from uniform. The rel-
ative functional responses differ by subject and by function, though a number of subjects exhib-
it relatively strong or weak responses in multiple functions. Likewise, relative antibody feature
strength differs by subject and feature, and notably some subjects exhibit relatively strong re-
sponses across multiple antigen specificities for a given IgG subclass and/or strong responses
across multiple subclasses for a given antigen specificity. Finally, there are relationships be-
tween the features and functions by subject, e.g., a group of subjects with strong ADCP and
ADCC responses appear also to have strong feature characteristics. In order to better extract,
assess, and utilize such observations, machine learning techniques were applied to provide
models of the relationship between characteristics of HIV-specific antibodies induced by vacci-
nation, and their functional activity.

Unsupervised learning
As Fig 2A illustrates, assessing antibody feature:function correlations across subjects enables
the identification of several strong relationships. Consistent with their binding affinity to FcgR
expressed on monocytes, IgG1 and IgG3 subclasses are most correlated with strong ADCP
function, while IgG2 and IgG4 are less correlated or even mildly anticorrelated. Similarly,
gp120 and V1V2 antigens tend to yield the strongest correlations, as would be expected given
the direct experimental relevance of these antigens to this functional activity. For ADCC, the
IgG1 correlations are weaker and the IgG3 correlations weaker still, while the IgG2 and IgG4
classes are now slightly more correlated (particularly IgG2.gp41). For the cytokines, strong
IgG1 and IgG3 correlations are observed, particularly with gp120 and V1V2. The IgG4 subclass
also yields some strong correlations, likely influenced by the large number of subjects with un-
detectable IgG4 responses (uniform colors within a column in Fig 1, no longer 0 after standard-
ization), and rare subjects with strong IgG4 responses.

Predicting Antibody Function in RV144
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A number of antibody features exhibit similar patterns of correlation with function; these
can largely be explained by correlations among the features themselves. Indeed, hierarchical
clustering of the feature correlation profiles (Fig 2B) reveals that the features are not indepen-
dent but in fact the true dimensionality of the data is lower than the number of original col-
umns. The figure highlights six clusters of mutually correlated features formed by bisecting the
dendrogram as indicated to strike a balance between the number of clusters and their visual co-
herence. An array of statistical methods to determine an optimal number of clusters gave sub-
stantially different answers from each other, though the optimal partitions they identified were
largely consistent how one might manually divide the dendrogram (results not shown). Some
of these clusters are defined by Ab subclass (each IgG subclass dominates one cluster), while
others are defined by antigen specificity (V1V2 and p24 clusters are also observed). Correla-
tions between IgG1 and IgG3-defined clusters are also observed. The combination of the fea-
ture:feature clustering and the feature:function correlations observed suggests that different

Fig 1. Input data. For each of 80 vaccinated subjects (rows), measurements of (A) 20 antibody features (4 IgG subclasses with 5 antigen specificities) and
(B) 3 effector functions. The heatmap colors indicate relative values within each column, standardized to a mean of 0, a standard deviation of 1, and
truncated at 6σ. Color blocks above the antibody feature columns indicate IgG subclass and antigen specificity.

doi:10.1371/journal.pcbi.1004185.g001
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groups of subjects produce characteristically different antibody responses, yielding different
functional outcomes.

The strong relationships apparent among antibody features (indicating lower intrinsic di-
mensionality) likely result in redundancy in terms of their contributions to functional predic-
tions. To support the supervised analysis below, a set of “filtered” feature sets was developed for
each function. Filtered features were selected by choosing the feature most strongly correlated
with the function within each cluster, in terms of the magnitude of the Pearson correlation coef-
ficient (Fig 2A). Filtered features for each functional measurement are starred in Fig 2B, and
span the full range of subclasses and antigen specificities. Thus, while redundancy is reduced,
the ability to obtain insights into the relative contributions of each feature type to functional ac-
tivities is maintained. While there are non-negligible correlations outside the clusters (and in-
deed between these selected features), the supervised results show that they have little impact on
predictive performance.

As an alternative method to account for the possible redundancy among antibody features,
a principal component analysis (PCA) was also performed. PCA yields a set of principal

Fig 2. Unsupervised analysis of antibody features and functions. (A) Antibody feature:function correlations. IgG subclass and antigen specificity are
indicated by color blocks. Cell colors indicate Pearson correlation coefficients (PCC), and p-values are represented by asterisks (*< = 0.05; **< = 0.01; ***
< = 0.001). (B) Feature:feature correlations, hierarchically clustered. Antibody feature color blocks, PCCs, and significances are denoted as in (A). Bisecting
the dendrogram, as shown by the red line, results in 6 antigen.subclass clusters, each also denoted in the figure by a box. For each function, one feature was
selected (starred: blue-ADCP; yellow-ADCC; green-cytokines) from each cluster to yield the filtered feature set. (C) Eigenvectors from principal component
analysis. Cell colors indicate feature coefficients in the eigenvectors. Antibody feature color blocks are as in (A).

doi:10.1371/journal.pcbi.1004185.g002
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components (PCs) that represent the main patterns of variability of the antibody features
across subjects. The PCs provide a new basis for the data; i.e., each observed feature profile is a
weighted combination of the PC profiles, so we can think of the PCs as “eigen-antibodies”. In
contrast to the filtered features, the principal components are composites, and by inspecting
their composition, we can see the patterns of concerted variation of the underlying antibody
features. Fig 2C illustrates the principal components and S1 Fig provides the corresponding ei-
genvalue spectrum (the relative amount of variance captured by each PC). While PC1 is essen-
tially a constant offset by which to scale the overall magnitude of a feature profile, the other
leading PCs reflect many of the same relationships also observed in the clustering analysis, in-
cluding both subclass relationships and antigen specificity relationships. In particular, PC2
largely contrasts IgG2/4 vs. 1/3 composition, PC3 IgG4 vs. others, and PC4 IgG3 vs. others,
while PC5 focuses on the relative p24-associated contribution, PC6 that of V1V2, and PC7 ap-
parently an even finer-grained V1V2 specificity. As these leading seven principal components
are the most readily interpretable and cover a large fraction of the variance in the data (S1 Fig),
they are used for supervised learning below, and trailing PCs are dropped.

The unsupervised analysis suggests that there is indeed a high level of information content
in the data, evidenced by the relationships among features identified by the clustering and PCA
approaches, the correlations between the antibody features and the functions, and the agree-
ment of these relationships with biological intuition. The strong relationships uncovered by
these methods suggest that it might be possible to build models to predict functions from fea-
tures, whether directly measured features or derived composites.

Supervised learning: Classification
We first sought to robustly classify antibody function as high or low, relative to the median. To
assess how much this discrimination depends on the classification approach utilized rather
than the underlying information content in the data, we employed three different representa-
tive classification techniques: penalized logistic regression (a regularized generalized linear
model based on Lasso), regularized random forest (a tree-based model), and support vector
machine (a kernel-based model). Furthermore, in order to assess the effect of reducing redun-
dancy and focusing on the most interpretable feature contributions, three different sets of
input features were considered: the complete set (20 features: 4 subclasses � 5 antigens), the fil-
tered set with one feature selected from each cluster based on correlation with function (6 fea-
tures), and the PC features (7 leading PCs), as illustrated in Fig 2. Separate classifiers were built
for each function and each input feature set.

Fig 3 summarizes the classification results for ADCP by penalized logistic regression. To as-
sess the overall performance, we conducted 200 replicates of five-fold cross-validation. That is,
for each of 200 replicates, the subjects were randomly partitioned into five equal-size sets, or
“folds”, and five different models were constructed. Each model was trained using data for four
of the sets of subjects, and then was used to make predictions for the fifth “held-out” set. The
predictions for the held-out subjects were compared against the known (but ignored for train-
ing) values, and performance assessed accordingly. By repeating this 200 times, the impact of
the random split can be factored out.

Fig 3A illustrates the predictions on one replicate (combining all five of its folds, with each
serving separately as test data) and Fig 3B summarizes the resulting area-under-ROC-curve
(AUC) over all 200 replicates (computing AUC only on test data). This data poses a difficult
classification problem as there is not a clear distinction between high and low classes, which
were simply defined by the median value. Nonetheless, even with a rigorous 200-replicate five-
fold cross-validation, a mean AUC of 0.83 (standard deviation of 0.10) was observed,
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indicating that antibody features are highly and robustly predictive of high vs. low ADCP activ-
ity. Fig 3G shows the contributions of the antibody subclass-specificity features to a classifier
trained on the whole dataset; while the coefficient values varied in individual folds, the same
overall trends were observed over the different splits (results not shown).

Penalized logistic regression readily enables assessment of the relative importance of differ-
ent features for classification. The model sums the feature values, each weighted by its specific
coefficient, and then applies a logistic function to yield the predicted classification value. In
order to counteract overfitting, the training process imposes a penalty relative to feature coeffi-
cients and thereby seeks a sparse model. The coefficients give the relative importance of each
feature to the predictor; associated p-values indicate the confidence in those coefficient values
(a large p-value indicates an unreliable estimate of the feature contribution). Thus we see, for

Fig 3. Classification of ADCP from antibody features by penalized logistic regression. (A-F) Prediction results by 200-replicate five-fold cross-
validation, illustrating PLR values (>0.5 predicted high ADCP;<0.5 predicted low) for one replicate (A,C,E) and providing area under the ROC curve (AUC)
over all 200 replicates (B,D,F). Box & whisker plots show the median (thick center line), upper and lower quartiles (box), and 1.5 times the interquartile range
(whiskers); all points are also plotted in a jittered stripchart. Colors for the classification examples indicate high (red) and low (blue) observed ADCP. (G-I)
Coefficients and p-values of the features for a model trained on all subjects. Different input features were used in classification: (A,B,G) the complete set; (C,
D,H) the filtered set; (E,F,I) the principal components. Colors for the feature coefficients indicate antibody subclass and antigen-specificity. For convenience,
a red line is drawn at p = 0.05.

doi:10.1371/journal.pcbi.1004185.g003
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example, that the two dominant and statistically significant (at an unadjusted 0.05 level) con-
tributors to predicting ADCP class are IgG1.gp120 and IgG3.p24, capturing both key sub-
classes with two different antigen specificities. While not achieving statistically significant
confidence in the coefficient value, negative contributions from IgG2 were also observed, con-
sistent with the unsupervised analysis and the reduced ability of this subclass to bind to FcγR
on phagocytes presumably due to blocking (i.e., preferred binding of antibodies with better
affinity).

No systematic pattern was observed among the misclassified samples; they varied over the
200 splits and were distributed over the whole range of ADCP values. They did, however, tend
to be those subjects with the weakest overall feature profiles, without large contributions from
features with either positive or negative coefficients.

Despite penalization, a relatively large number of features contributed to the classifier, and
to some extent they appeared redundant given the correlations among features observed in un-
supervised analysis. To obtain a sparser and less redundant model, we trained classifiers using
the filtered features from Fig 2B. Despite the reduction in data considered, Fig 3C and 3D
shows that the resulting performance with the filtered feature set is comparable to that with the
complete feature set, with a mean AUC of 0.84 (standard deviation 0.10). The feature contribu-
tions in Fig 3H are still driven by positive contributions of IgG1 and IgG3 with some of the
same antigens, along with negative IgG2 (with gp140).

Though the goal of this study was not to comprehensively and rigorously assess feature se-
lection methods, which would require further subsampling the data, we did investigate the sen-
sitivity of the cluster-based filtering to our use of the features within each cluster that had the
highest PCC. Thus we assessed each possible combination of features taken from the six clus-
ters in Fig 2B. We found that on average an AUC of 0.79 was obtained, with a range from 0.67
to 0.87 and a standard deviation of 0.04 (recall that the PCC-based approach obtained 0.84).
This result supports the conclusion that these groups of features do contain more or less redun-
dant information in terms of predicting function. Using the best correlated features provides a
sparse model that predicts as well as the model built from the complete feature set, and carries
the advantage of being less likely to perform well due to overfitting, and thus more interpret-
able in terms of the underlying biology.

As noted above, PCA provides an alternative means commonly used to reduce redundancy.
Thus we also trained classifiers using the principal components as features. Using these alterna-
tive, composite features, performance quality was maintained (Fig 3E and 3F), with a mean
AUC of 0.82 (standard deviation 0.11). Inspecting the key PCs contributing to a classifier, we
see that PC2 (IgG2/4 vs. 1/3) makes the biggest contribution, modulated by subclass contribu-
tions in PC3 (IgG4) and PC4 (IgG3) and antigen contributions in PC5 (p24), and PC6 (V1V2)
(Fig 3I). Thus the PCA-based approach is largely consistent with the others, with subclass and
antigen specificity again working in concert to predict function.

Table 1 summarizes the classification performance under all three classification methods.
All three machine learning techniques perform quite well, despite the difficulty of the median-
split classification problem and the rigorous five-fold cross-validation assessment. The PLR
model is consistently a bit better, and performance is essentially equivalent for each technique
across the different feature sets (complete, filtered, or PC), suggesting that over a wide range of
different modeling approaches, antibody features are indeed robustly predictive of qualitative
effector function.

Corresponding classifiers were also built for ADCC and cytokine profiles using each of the
three different learning techniques and three different feature sets; the performance of these
models is also summarized in Table 1. The cytokine classifiers perform nearly as well as the
ADCP ones, and the ADCC classifiers less accurately but still strikingly well. The choice of
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feature set (complete, filtered, PC) did not have a substantial effect on performance. The PLR
approach was generally superior, with RRF quite comparable and SVM somewhat degraded
but still yielding good performance. Thus our hypothesis that antibody features enable robust,
high-quality prediction of antibody function is well-supported by the summary results for each
of three distinct effector functions. Furthermore, the logistic regression model enables straight-
forward identification of the key contributors, and points toward feature roles consistent with
known IgG and innate immune cell biology.

S2 Fig (ADCC) and S3 Fig (cytokines) detail the PLR results. For ADCC, the key contribu-
tion using the complete feature set is made by IgG1.gp41, consistent with ADCP in terms of
subclass, but driven by a different antigen. In contrast there appears to be less contribution
from IgG3 and IgG4 contributes positively (though the confidence in that coefficient is lower).
Several of the selected features are gp41-specific. These trends are also largely reflected in the
unsupervised feature:function correlations in Fig 2A. The cytokine feature usage is driven by
IgG1 and IgG3 (with different antigens), along with an inconsistent contribution from IgG4,
negative with p24 and gp140 and positive with gp41. Since these features are themselves highly
correlated (Fig 2C), it appears that, despite the penalization in the PLR approach, this model is
likely to be overfit. For both functions, feature filtering results in much the same relative contri-
butions as for the complete feature set, with coefficients more strongly focused on a few key
features. Notably, the inconsistent use of IgG4 features is eliminated by filtering. The ADCC re-
sponse for the PC features is driven by PC6, which appears primarily to distinguish the
V1V2-specificity. The PC features selected for the cytokines are more consistent with the other
feature sets, with PC2 (IgG2/4 vs. 1/3) modulated by PC6 (V1V2), along with an IgG4.V1V2
down-selection via PC7.

Table 1. Summary of classification (shaded) and regression (unshaded) performance for prediction of antibody function across different input fea-
tures andmultiple learning techniques.

Function Prediction Assessment* Method Input features

Complete Filtered PCs

ADCP Classification PLR 0.83 (0.10) 0.84 (0.10) 0.82 (0.11)

RRF 0.77 (0.63) 0.79 (0.07) 0.79 (0.07)

SVM (Radial) 0.71 (0.07) 0.73 (0.06) 0.70 (0.07)

Regression Lars 0.64 (0.15) 0.61 (0.15) 0.61 (0.15)

GP (Poly) 0.56 (0.18) 0.53 (0.16) 0.55 (0.16)

SVR (Radial) 0.58 (0.16) 0.56 (0.19) 0.58 (0.15)

ADCC Classification PLR 0.73 (0.12) 0.74 (0.12) 0.70 (0.13)

RRF 0.65 (0.07) 0.62 (0.07) 0.63 (0.06)

SVM (Radial) 0.60 (0.06) 0.56 (0.06) 0.60 (0.06)

Regression Lars 0.40 (0.18) 0.42 (0.18) 0.36 (0.20)

GP (Poly) 0.13 (0.21) 0.24 (0.21) 0.23 (0.20)

SVR (Radial) 0.32 (0.19) 0.14 (0.24) 0.20 (0.21)

Cytokines Classification PLR 0.80 (0.11) 0.76 (0.11) 0.80 (0.11)

RRF 0.75 (0.06) 0.74 (0.06) 0.72 (0.07)

SVM (Radial) 0.67 (0.07) 0.67 (0.06) 0.65 (0.07)

Regression Lars 0.58 (0.20) 0.51 (0.21) 0.44 (0.21)

GP (Poly) 0.43 (0.27) 0.46 (0.24) 0.48 (0.25)

SVR (Radial) 0.40 (0.18) 0.55 (0.15) 0.43 (0.18)

* For classification: AUC (standard deviation); for regression: PCC (standard deviation).

doi:10.1371/journal.pcbi.1004185.t001
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The median-based dichotomization into high and low classes allowed us to characterize
which antibody features were generally associated with superior effector function, but the divi-
sion between high and low was quite fuzzy, with many subjects on the border. Thus we also
performed classification into the top and bottom quartiles (ignoring the middle half). While
unsurprisingly, the best vs. worst classification performance was better than the better vs.
worse, our focus was the features driving class assignment, which remained largely consistent
(results not shown). In particular, IgG1, with a variety of antigens, was the dominating contrib-
utor, often complemented by an IgG3-based feature; in addition, IgG4 features contributed
negatively to ADCP but positively to the other two functions.

Supervised learning: Regression
Given the quality of the classification results, both in predictive ability and in terms of clear
and consistent use of biologically significant features, we sought to build quantitative models to
predict function. Again, three representative techniques were used to broadly assess the general
ability of the data to support predictive models: Lars (regularized linear regression based on
Lasso), Gaussian process regression (a nonlinear model), and support vector regression (a ker-
nel-based model). We again built separate models for each function, under each set of
input features.

Fig 4 summarizes the ADCP regression results from Lars across the complete feature set
(Fig 4A, 4B and 4G), the filtered features (Fig 4C, 4D and 4H), and PCs (Fig 4E, 4F and 4I).
While 200-replicate five-fold cross-validation was used for performance assessment, leave-one-
out cross-validation (LOOCV) was used to generate representative scatterplots of experimental
vs. predicted functional values, as is appropriate when viewing LOOCV as a form of jackknife.
The models are clearly predictive of ADCP, obtaining a mean Pearson correlation coefficient
PCC = 0.64 (standard deviation 0.15) over the 200-replicate five-fold. An example LOOCV
scatterplot is illustrated in Fig 4A; the correlated trend between observed and predicted ADCP
is clear. Notably, the LOOCV and five-fold PCCs (Fig 4B) were similar.

As a form of linear regression, Lars enables direct inspection of the coefficients contributing
to the prediction. As with penalized logistic regression, the regularization employed by Lars in
training seeks to force coefficients to zero and yield a sparse model. Fig 4G depicts the coeffi-
cients and their p-values for a model trained on the entire set of features. Among the largest
and most-confident coefficients, we see that IgG1.gp120 is again a strong positive contributor,
joined by the related IgG1.gp41 and IgG3.p24, and IgG2.gp140 is a strong negative contributor.
Despite the Lars penalization, the model incorporates offsetting positive and negative contribu-
tions from IgG4 under different antigens, though these features are highly correlated with each
other (Fig 2C).

In inspecting outliers, we found that the most overpredicted subjects (i.e., predicted ADCP
much larger than experimental) were characterized by a relatively large number of features
with large values. A possible statistical explanation for this is that the model works best when a
few features are indicative of the response. A possible experimental explanation is that there
are competitive effects, and indeed the contributions from multiple good antibodies are not ad-
ditive in terms of recruiting effector cells.

As with classification, we sought to focus on the most informative and non-redundant fea-
tures in order to reduce the risk of overfitting and develop more readily interpretable models.
Models learned from the filtered features from Fig 2B maintain about the same accuracy (mean
PCC = 0.61 with standard deviation 0.15 for the 200-replicate five-fold (Fig 4D); an example
LOOCV scatterplot is illustrated in Fig 4C). By inspecting features for a model trained on the
filtered features (Fig 4H), we see that the prediction is driven primarily by IgG1.gp120 and

Predicting Antibody Function in RV144

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004185 April 13, 2015 11 / 20



IgG3.V1V2, with a negative contribution from IgG2.gp140. The contradictory IgG4 contribu-
tion is resolved. Similarly, PCA-based models attain mean PCC of 0.61 with standard deviation
0.15 (Fig 4E and 4F), based largely on PC2 (IgG2/4 vs. 1/3) and somewhat on PC3 (IgG4 vs.
others), as can be seen in Fig 4I.

The performance of all three machine learning methods using all three feature sets is sum-
marized in Table 1. As with classification, the linear model dominates, and all methods per-
form similarly well with any of the input feature sets.

Lars-based regression results for ADCC and cytokines are presented in S4 Fig, and S5 Fig,
respectively, and summarized in Table 1. While providing the desired trend overall (with a few
striking outliers), the ADCC regression with the complete feature set does not have as high a
PCC (mean 0.40, standard deviation 0.18) as the ADCP one (mean 0.64, standard deviation
0.15). With a mean PCC of 0.58 and a standard deviation of 0.20, the cytokine regression is
comparable to that observed in predicting ADCP, though the representative scatterplot is not
as pleasing to the eye due to the density of subjects with low values. Feature filtering achieves
essentially the same performance for ADCC but a degradation in the cytokine performance as
assessed by PCC, though the scatterplot appears roughly as good. The switch to PC features

Fig 4. Regression modeling of ADCP from antibody features by Lars. (A,C,E) Representative regression scatterplot based on leave-one-out cross-
validation, (B,D,F) PCCs for 200-replicate five-fold cross-validation. (G-I) Coefficients and p-values of the features for a model trained on all subjects.
Different input features were used: (A,B,G) the complete set; (C,D,H) the filtered set; (E,F,I) the principal components. Box & whisker plots show the median
(thick center line), upper and lower quartiles (box), and 1.5 times the interquartile range (whiskers); all points are also plotted in a jittered stripchart. Colors for
the feature coefficients indicate antibody subclass and antigen-specificity.

doi:10.1371/journal.pcbi.1004185.g004
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degrades the PCC measurements for both functions, though again yielding trends that appear
satisfactory visually.

As for classification, ADCC prediction is driven by IgG1.gp41, with IgG1.gp140 also con-
tributing strongly, and probably redundantly, as suggested by Fig 2B. As we saw for classifica-
tion, the cytokine model has positive IgG1 and IgG3 contributions and inconsistent IgG4
contributions. For the filtered features, the ADCC model is focused on IgG1.gp41, with IgG1.
gp140 replaced by the related IgG3.gp140. The feature-filtered model for cytokines retains
IgG3.V1V2 and IgG1.gp120 contributions and resolves the IgG4 inconsistency, leaving a posi-
tive IgG4.gp41 contribution as observed in Fig 2A. When switching to the PCA-derived fea-
tures, the ADCC regression model is driven by PC6 (V1V2), as with the classification model,
while the cytokine regression model agrees with the classification model in its use of PC6 and
PC7 with opposing signs, while weakening PC2 (IgG2/4 vs. 1/3) perhaps in lieu of added con-
tributions from PC4 (IgG4) and PC3 (IgG3).

Table 1 summarizes the performance for ADCC and cytokines under all machine learning
techniques and feature sets. Once again the linear model dominates the nonlinear models, par-
ticularly for ADCC. With the complete feature set, this is likely directly attributable to overfit-
ting, and an improvement of the nonlinear methods upon starting with the filtered features
though not as much with the PC features, was observed. As discussed in the methods, the pre-
sented results employ a polynomial kernel for Gaussian Process Regression and a radial basis
kernel for Support Vector Regression; alternative kernels did not improve the performance.
While the disappointing performance of the more sophisticated methods could potentially be
improved by custom feature selection methods or parameter tuning, our goal here is not to
provide such a benchmark but rather to establish the general scheme of predictive modeling of
antibody feature: function relationships. The overall concordance observed between different
feature sets, different regression and classification methods, and across multiple, complex, anti-
body functional activities, subjected to cross-validation assessment, demonstrates that indeed
antibody features can be used to effectively predict functional activities.

Discussion
We have demonstrated that the integration of antibody feature and function data via machine
learning models and methods helps identify and make use of critical landmarks in the complex
landscape of antibody feature:function activity. Sets of features emerge from patterns in the
data, and these feature sets are able to robustly predict high/low levels of function, and are even
informative enough to support quantitative predictions of functional activity. The subclass-
specific contributions observed here are consistent with expectations, according to the recep-
tors on the relevant effector cells, and the activity profiles among IgG subclasses [26]. At the
same time, the approach provides a finer resolution picture of the interrelationships among an-
tigen specificity, subclass, and effector function.

In the case of RV144, it is worth noting that the vaccine included two different components,
priming with canarypox ALVAC-HIV (vCP1521) and boosting with recombinant gp120 AIDS-
VAX B/E protein. Thus while the prime included the gp120, gp41, and p24 antigens evaluated
here, the boost only included gp120. Furthermore, cell-based functional assays employed particu-
lar antigens to stimulate a response, and those studied here are gp120-specific. Thus we might ex-
pect to see differences within functional responses among subjects according to different overall
specificities of their antibodies, or even within antibody specificities depending on whether they
were raised in the setting of the prime or the boost. Accordingly, associations observed here, such
as those between gp41-specific antibodies and functional activity in assays in which only gp120
is presented, clearly do not have mechanistic significance with respect to functional assays that
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characterize only gp120-specific responses. However, they may nonetheless provide useful asso-
ciative markers that functionally differentiate overall antibody responses to priming and boosting
or among subjects that were more finely grained than subclass and antigen-specificity alone.

The machine learning approaches employed here contrast with typical univariate correla-
tion analysis in two important ways: simultaneously combining and down-selecting features,
and assessing generalization performance in a predictive setting. These approaches incorporate
multiple features into a model, but do so in a way that avoids simply “memorizing” artifacts of
the samples, as is easily possible with a sufficient number of features for a small sample set.
Cross-validation analysis then ensures that the models are not overfit, by testing how well pre-
dictions from a model trained on one set of data match observations for another set. This pre-
dictive assessment stands in contrast to typical correlation analysis, which uses all the data and
simply evaluates quality of fit.

Redundancy among features confounds the interpretation of multivariate feature:function
relationships. To account for redundancy, we have used representative, common approaches
including feature selection within the learning algorithm (via regularization), feature filtering
(via feature clustering), and feature combination (via principal components analysis). The ap-
proaches were all fairly comparable in performance for this dataset, perhaps due to the relative-
ly small number of initial features. Larger feature sets may result in more substantial
differences, and require additional techniques to reduce the number of features contributing to
a model down from a highly redundant input set to a reduced but representative and robust
set. For example, elastic net type approaches [27] might strike a beneficial balance between
eliminating redundant features and averaging them out to improve robustness.

The goal of this paper is to demonstrate that it is possible to develop models able to robustly
predict the broad functional activities of antibodies from data regarding antigen specificity and
Fc characteristics, with an aim ultimately in developing models that will correlate with protec-
tion or risk of infection. Several representative methods were demonstrated, though a rigorous
benchmarking comparison was not performed as that would require a larger, more diverse
dataset. We conclude that while there are some clear differences in performance among the
methods, they all show that there is sufficient information in the features to predictively model
function. The penalized generalized linear models are generally very good, and provide the
added advantage of easy interpretation and relatively low model complexity; as noted in the
previous paragraph, a softer regularization might be beneficial in the future.

The relationships identified by machine learning methods can be used to drive prospective
studies to test particular hypotheses regarding how particular antigen specificities and sub-
classes contribute to the stimulation of effector response. As an illustration, we note that subse-
quent to our modeling and characterization of feature:function relationships in the RV144
data, depletion studies confirmed a mechanistic role for antibodies associated with prediction
quality. These experimental observations demonstrated that indeed IgG3 is important for a
strong phagocytic response, with IgG3-depleted samples having significantly reduced ADCP
activity [23]. Similarly, our models predicted that IgG4 has a negative impact on functional
level, and an analogous depletion experiment did exhibit this trend across 2 different vaccine
regimens, although the increase in activity in the RV144 samples when IgG4 was depleted did
not meet statistical significance [23].

Due to the evident importance of innate immune recruiting for the protection observed in
the RV144 trial, and given the unprecedented feature and function data available for a set of sub-
jects from that trial, we have focused here on specific relationships within the repertoire of anti-
bodies induced by this vaccine. However, the approach described here can also be productively
applied in other settings, shedding light on relationships specific to particular cohorts, as well as
different vaccination and infection contexts. By integrating diverse datasets, it may even be
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possible to uncover more general rules governing the ways that antibodies bridge the adaptive
and innate arms, and how those rules can then be specialized in a context-dependent fashion.

While the present study demonstrated the ability of antibody features to predict functional ac-
tivities, the longer-term goal is to predict the impact of vaccination. To this end, an important
next step is a case/control study with the potential to tease apart signatures leading to protection.
Even in the context of the functions assayed here, a more complex multi-output model could be
built in order to ascertain signatures of desirable polyfunctional responses. The fact that some
functions were better predicted than others in the models described here, may indicate that addi-
tional antibody feature information could contribute to improved model performance. In partic-
ular, ADCC activity, the function predicted most poorly by the antigen and subclass data used
here, is known to be dependent on antibody glycosylation state [22], which was not assessed in
this study. Feature data could be extended to characterize a wider range of relevant antibody fea-
tures, including additional antigen specificities as well as characteristics of the Fc glycan struc-
ture, or interactions with the cellular antibody receptors expressed by NK cells and phagocytes.

Overall, we find that the parallel assessment of antibody function and antibody features can
provide for development of models enabling quantitative predictions of functional activity
across multiple, divergent antibody activities. Because these antibody functions have been asso-
ciated with better clinical outcomes in HIV infected subjects, as well as the protection observed
in RV144 and in many settings beyond HIV infection, but are poorly predicted by antibody
titer, we anticipate that this type of predictive model can provide significant value, both in
terms of permitting the substitution of high-throughput biophysical characterization for low-
throughput cell-based assays, as well as for uncovering novel structure:function relationships
that can inform vaccine design efforts.

Methods

Data collection and preprocessing
Plasma samples, provided by the MHRP and RV144 study group, were obtained from 100 par-
ticipants in the RV144 vaccine trial [15], consisting of 20 placebo and 80 vaccinated subjects at
week 26. Experimental methods used have been previously described [23]. Briefly, IgG was pu-
rified from all samples using Melon Gel according to the manufacturer’s instructions (Thermo
Scientific). The functional activity of HIV-specific antibodies was determined in 3 different
cell-based assays. Phagocytic activity was assessed using a monocyte-based assay in which the
uptake of gp120-coated fluorescent beads is determined by flow cytometry [24]. Antibodies
were tested at a concentration of 25 ug/ml MN. Similarly, the cytotoxicity profile of antibodies
was tested at a concentration of 100 ug/ml in the rapid fluorescent ADCC assay, which assesses
the ability of antibodies to drive primary NK cells to lyse gp120-pulsed target cells [25]. Lastly,
NK cell degranulation and cytokine secretion were monitored by flow cytometry as described
[23]. Surface expression of CD107a, and intracellular production of IFN-γ and MIP-1β were
assessed, and the fraction of NK cells which were triple positive was determined. In order to
profile antibody features, a customized antigen microsphere array was used to assess antibody
specificity (gp120, gp140, V1V2, gp41, and p24) and subclass (IgG1,2,3,4) [14].

Array measurements for the vaccinees were standardized individually for each antigen.sub-
class feature as follows. Background signal level was derived from the values for that feature
among placebos, as the placebo mean plus one standard deviation. This background was sub-
tracted from each vaccinee. Finally, the vaccinee values for the feature were scaled and centered
to a mean of 0 and a standard deviation of 1, with values truncated to 6σ.

For functional assays, data was not placebo-subtracted, but was instead inspected to ensure
that low activity was observed in samples from placebo subjects
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Unsupervised learning
Antibody feature:function and feature:feature correlations were computed over the set of 80
vaccinated subjects and assessed using Pearson correlation coefficient and p-value.

Features were clustered based on the profile of their correlation coefficients over the set of
all features. Hierarchical clusters were generated by the Ward linkage algorithm [28], assessing
pairwise similarity between profiles in terms of Pearson correlation coefficient (i.e., 1-r dissimi-
larity). By visual inspection, six groups were identified in the resulting dendrogram. The R
package NbClust was also used to assess optimal numbers of clusters according to a number of
different indices [29]. For each function and each group, the feature with the largest-magnitude
feature:function correlation coefficient was identified; each such feature also had the best fea-
ture:function p-value within its group,< = 0.001.

Principal component analysis was performed on the feature:subject data matrix (after pre-
processing). Singular value decomposition was employed to determine a set of eigenvectors
and corresponding eigenvalues, with the eigenvectors serving as a basis transformation matrix
containing principal components that are linear combinations of the original features, and the
eigenvalues indicating the amount of variance in the data captured by their eigenvectors. The
top 7 were chosen for further use in supervised methods, by visual inspection of their compo-
nents and their eigenvalues.

Supervised learning: Classification
Three different and representative classification methods were employed: L1 penalized logistic
regression (PLR) [30], regularized random forest (RRF) [31], and support vector machine
(SVM) [32,33].

PLR is a form of logistic regression incorporating into the model evaluation a lasso penalty
term λ||β||1, where λ is a tuning parameter and ||β||1 is the L1 norm of a coefficient parameter
vector,β. Thus the learning favors sparse models, as zero-valued coefficients do not contribute to
the penalty term. The R package “penalized” was used for PLR. It employs a greedy search to de-
termine the best value for λ according to nested cross-validation (i.e., given a training set, doing
an internal cross-validation within it to determine the performance under possible λ choices).

RRF is a decision tree-based method that generates multiple decision trees over bootstrap rep-
licates of the data (i.e., a random forest), at each split selecting a feature from a randomly-sam-
pled set based on an Gini index assessment of node impurity augmented with a regularization
penalty to prefer a sparser set of selected features. The R package “RRF” was used for RRF-based
learning. Two parameters were specified: mtry, the number of features to be randomly sampled
at each split, which was set to the number of input features; and ntree, the number of trees or
bootstrap samples, which was set to 2000 to obtain more reliable results. The regularization pa-
rameter is handled automatically by the method, based on the scores from a 0-penalty model.

SVM is a kernel-based nonlinear classifier that finds a separating hyperplane (in a space de-
fined by the kernel) between the classes, so as to minimize the risk of classification error. The R
package “e1071”, based on the C classification method of the libsvm library [34], was used for
SVM-based classification. The standard linear, polynomial, and radial basis kernels were evalu-
ated, and results presented for the radial basis function.

Default parameter values were used except where noted.
Each method was trained separately for each function with each of three different feature

sets: the complete preprocessed set, the filtered set from the feature:feature clustering, and the
set of principal components. To study the impact of selecting different features in the cluster-
based filtering, the Lars method was also applied to each possible set of features combining one
from each cluster.
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To obtain robust characterization of classification performance, 200 replicate five-fold cross
validation was employed; i.e., the data was randomly split into fifths, four used for training and
one for testing, with 200 different such training/testing runs. The R package “ROCR” was used
to calculate a cut-off independent evaluation of the area under the ROC curve (AUC) for
each replicate.

To gain insights into the features driving the PLR classification performance, a model was
also built using all subjects in order to obtain the best confidence in the coefficients.

In order to evaluate the impact (both prediction quality and feature usage) of median-based
dichotomization, the PLR-based approach was applied in the same manner to a dataset limited
to the subjects with the top and bottom quartile ADCP values.

Supervised learning: Regression
Diverse representative approaches employed for regression were Lars [35,36], Gaussian Process
Regression (GP) [37], and Support Vector Regression (SVR) [38].

Lars performs penalized linear regression with the L1-norm lasso penalty discussed above
for PLR. The R package “parcor” was used for Lars. As with PLR the penalty weight was select-
ed by cross-validation. The parameter for the number of splits was set to 10 for robust fitting.

GP performs nonlinear regression based on a stochastic process specified in terms of mean
and covariance functions. Observed values are used to fit the functions and thereby predict un-
observed ones. The R package “kernlab” was used for GP. A polynomial kernel function was
used to fit the GP model, as it performed better than other kernels.

SVR is based on the same theory as SVM, discussed above, but uses the kernel-based ap-
proach to fit a regression model to reduce the quantitative prediction error. The R package
“kernlab” was also used for SVR. As with SVM, we evaluated the standard linear, polynomial,
and radial basis kernels and presented the results for the radial basis function.

Default parameter values were used except where noted.
The different feature sets were tested as described in the classification section.
Performance was assessed by Pearson correlation coefficient (PCC), r, between observed

and predicted function value; r assesses the linear correlation (between -1 for perfectly anticor-
related and +1 for perfectly correlated), while r2 represents the fraction of the variation ex-
plained. The PCC was computed over 200-replicate five-fold cross-validation. In addition,
leave-one-out cross-validation was performed in order to generate representative scatterplots.

A Lars model was trained on all subjects in order to enable inspection of feature coefficients.

Supporting Information
S1 Fig. Principal component analysis eigenvalue plot. (A) Relative variance and (B) log abso-
lute variance captured by each principal component. Red lines indicate truncation after the 7
leading principal components, which capture most of the variance and are most
readily interpretable.
(TIF)

S2 Fig. Classification of ADCC from antibody features by penalized logistic regression.
(A-F) Prediction results by 200-replicate five-fold cross-validation, illustrating PLR values
(>0.5 predicted high ADCP;<0.5 predicted low) for one replicate (A,C,E) and providing area
under the ROC curve (AUC) over all 200 replicates (B,D,F). Box & whisker plots show the me-
dian (thick center line), upper and lower quartiles (box), and 1.5 times the interquartile range
(whiskers); all points are also plotted in a jittered stripchart. Colors for the classification exam-
ples indicate high (red) and low (blue) observed ADCP. (G-I) Coefficients and p-values of the
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features for a model trained on all subjects. Different input features were used in classification:
(A,B,G) the complete set; (C,D,H) the filtered set; (E,F,I) the principal components. Colors for
the feature coefficients indicate antibody subclass and antigen-specificity. For convenience, a
red line is drawn at p = 0.05.
(TIF)

S3 Fig. Classification of cytokine release from antibody features by penalized logistic re-
gression. (A-F) Prediction results by 200-replicate five-fold cross-validation, illustrating PLR
values (>0.5 predicted high ADCP;<0.5 predicted low) for one replicate (A,C,E) and provid-
ing area under the ROC curve (AUC) over all 200 replicates (B,D,F). Box & whisker plots show
the median (thick center line), upper and lower quartiles (box), and 1.5 times the interquartile
range (whiskers); all points are also plotted in a jittered stripchart. Colors for the classification
examples indicate high (red) and low (blue) observed ADCP. (G-I) Coefficients and p-values
of the features for a model trained on all subjects. Different input features were used in classifi-
cation: (A,B,G) the complete set; (C,D,H) the filtered set; (E,F,I) the principal components.
Colors for the feature coefficients indicate antibody subclass and antigen-specificity. For conve-
nience, a red line is drawn at p = 0.05.
(TIF)

S4 Fig. Regression modeling of ADCP from antibody features by Lars. (A-F) Representative
regression scatterplot based on leave-one-out cross-validation (A,C,E), and PCCs for 200-repli-
cate five-fold cross-validation (B,D,F). (G-I) Coefficients and p-values of the features for a
model trained on all subjects. Different input features were used: (A,B<G) the complete set;
(C,D,H) the filtered set; (E,F,I) the principal components. Box & whisker plots show the medi-
an (thick center line), upper and lower quartiles (box), and 1.5 times the interquartile range
(whiskers); all points are also plotted in a jittered stripchart. Colors for the feature coefficients
indicate antibody subclass and antigen-specificity.
(TIF)

S5 Fig. Regression modeling of cytokine release from antibody features by Lars. (A-F) Rep-
resentative regression scatterplot based on leave-one-out cross-validation (A,C,E), and PCCs
for 200-replicate five-fold cross-validation (B,D,F). (G-I) Coefficients and p-values of the fea-
tures for a model trained on all subjects. Different input features were used: (A,B,G) the com-
plete set; (C,D,H) the filtered set; (E,F,I) the principal components. Box & whisker plots show
the median (thick center line), upper and lower quartiles (box), and 1.5 times the interquartile
range (whiskers); all points are also plotted in a jittered stripchart. Colors for the feature coeffi-
cients indicate antibody subclass and antigen-specificity.
(TIF)

S1 Dataset. Compiled antibody feature and function data [23].
(CSV)
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