80 research outputs found

    Bridging the Gap from New Graduate to Practicing Occupational Therapist: An Educational Resource in Orthopedics

    Get PDF
    OT is pivotal in the rehabilitation and recovery of individuals with orthopedic conditions (Nelson, 2010). However, as a new graduate occupational therapist, there is limited support as they make the transition to clinical practice (Turpin et al., 2021). New graduates receive support through professional mentorship and peer support but are often focused on the safe practice of basic skills rather than on best practices (Opoku et al., 2021). New graduates would feel more confident in clinical judgment and decision-making with additional support from mentors and accessible up-to-date resources (Adam et al., 2013). Purpose: Develop an accessible resource for new occupational therapists entering the orthopedic setting.https://soar.usa.edu/otdcapstonesfall2023/1009/thumbnail.jp

    Thermal and Structural Response of Beam-End Shear Connections During a Large Compartment Fire Experiment

    Get PDF
    The role of steel connections is essential in structural fire design and analysis for steel-framed composite structures. The current structural design provisions provide strength reduction factors of load-carrying members and their end-connection elements at elevated temperatures, based on small-scale experiments under uniform heating conditions. The realistic thermal and structural evolution in member connections, especially as part of full-scale floor assemblies exposed to a large compartment fire, has not been well characterized. A large compartment fire experiment was recently conducted on a 9.1 m by 6.1 m composite floor assembly as part of a two-story steel-framed building. The test assembly had a total of ten shear-tab (fin-plate) connections subjected to combined fire and mechanical loading. This paper presents the measured thermal response of these connections to fire and comparison with the corresponding Eurocode 3 predictions with two methods (1) incorporating the beam bottom flange temperature at midspan and (2) the section factor method. The results show that the Eurocode 3 methods conservatively predict the maximum temperature during heating and the cooling rate but overestimate the high-temperature strength of connections when estimated using the section factor method, showing that the Eurocode 3 simplified approaches are not meant to provide the details of the failure mode for connections. This study suggests that estimating the strength of connections using strength reduction factors may not guarantee a safe structural fire design. In addition, this paper estimated the total axial force (from slab and beam) at the composite connection via using the strain gauge measurements close to the column bases which were not exposed to fire. It suggests realistic axial load and rotational demand on the shear connection due to restraints to thermal elongation or contraction of supported members should be considered in future design guidance as should designing and detailing the connections for ductility to withstand the inelastic deformation demands during the heating and the cooling phases

    Aromatherapy Use for Post-operative Nausea and Vomiting for Patients Undergoing Same-day Surgeries

    Get PDF
    Description: Nausea and vomiting are frequent complications of anesthesia post-operatively. There is an increased prevalence of postoperative nausea and vomiting (PONV) in patients undergoing intra-abdominal and gynecologic surgeries. Many injectable and enteral medications are available for the prevention and treatment of PONV, each with the potential for side effects. Utilization of medications requires a provider order, which has the potential to delay initiation of therapy. The use of aromatherapy via inhalation for the treatment of PONV has been shown to eliminate nausea in up to 85% of patients. Patients have reported perceived effectiveness and favorable improvement with the use of aromatherapy for post-operative nausea. Aromatherapy products have been shown to be well tolerated with no adverse effects, drug interactions, or contraindications. Aim: To study the effectiveness of QueaseEASE® aromatherapy pods in the treatment of PONV in patients undergoing same-day intra-abdominal surgeries or hysterectomies. Intervention: We distributed 100 QueaseEASE® pods to patients scheduled for same-day intra-abdominal surgeries or hysterectomies. Informed consent was obtained preoperatively. Up to 24 hours after recovery, patients were instructed to document their episodes of nausea, severity at onset and severity 30 minutes after pod use. The severity of nausea was recorded using the visual analogue scale (0-100) where zero indicates no nausea and 100 indicates unbearable nausea. Use of traditional antiemetic medications was not excluded pursuant to individual provider practice. Data for concomitant antiemetic medication use was also recorded, including medication type, dose and frequency. Summary of Results: Results pending

    Proteomic assessment of a cell model of spinal muscular atrophy

    Get PDF
    Background Deletion or mutation(s) of the survival motor neuron 1 (SMN1) gene causes spinal muscular atrophy (SMA), a neuromuscular disease characterized by spinal motor neuron death and muscle paralysis. Complete loss of the SMN protein is embryonically lethal, yet reduced levels of this protein result in selective death of motor neurons. Why motor neurons are specifically targeted by SMN deficiency remains to be determined. In this study, embryonic stem (ES) cells derived from a severe SMA mouse model were differentiated into motor neurons in vitro by addition of retinoic acid and sonic hedgehog agonist. Proteomic and western blot analyses were used to probe protein expression alterations in this cell-culture model of SMA that could be relevant to the disease. Results When ES cells were primed with Noggin/fibroblast growth factors (bFGF and FGF-8) in a more robust neural differentiation medium for 2 days before differentiation induction, the efficiency of in vitro motor neuron differentiation was improved from ~25% to ~50%. The differentiated ES cells expressed a pan-neuronal marker (neurofilament) and motor neuron markers (Hb9, Islet-1, and ChAT). Even though SMN-deficient ES cells had marked reduced levels of SMN (~20% of that in control ES cells), the morphology and differentiation efficiency for these cells are comparable to those for control samples. However, proteomics in conjunction with western blot analyses revealed 6 down-regulated and 14 up-regulated proteins with most of them involved in energy metabolism, cell stress-response, protein degradation, and cytoskeleton stability. Some of these activated cellular pathways showed specificity for either undifferentiated or differentiated cells. Increased p21 protein expression indicated that SMA ES cells were responding to cellular stress. Up-regulation of p21 was confirmed in spinal cord tissues from the same SMA mouse model from which the ES cells were derived. Conclusion SMN-deficient ES cells provide a cell-culture model for SMA. SMN deficiency activates cellular stress pathways, causing a dysregulation of energy metabolism, protein degradation, and cytoskeleton stability

    hERG1a N-terminal eag domain–containing polypeptides regulate homomeric hERG1b and heteromeric hERG1a/hERG1b channels: A possible mechanism for long QT syndrome

    Get PDF
    Human ether-á-go-go–related gene (hERG) potassium channels are critical for cardiac action potential repolarization. Cardiac hERG channels comprise two primary isoforms: hERG1a, which has a regulatory N-terminal Per-Arnt-Sim (PAS) domain, and hERG1b, which does not. Isolated, PAS-containing hERG1a N-terminal regions (NTRs) directly regulate NTR-deleted hERG1a channels; however, it is unclear whether hERG1b isoforms contain sufficient machinery to support regulation by hERG1a NTRs. To test this, we constructed a series of PAS domain–containing hERG1a NTRs (encoding amino acids 1–181, 1–228, 1–319, and 1–365). The NTRs were also predicted to form from truncation mutations that were linked to type 2 long QT syndrome (LQTS), a cardiac arrhythmia disorder associated with mutations in the hERG gene. All of the hERG1a NTRs markedly regulated heteromeric hERG1a/hERG1b channels and homomeric hERG1b channels by decreasing the magnitude of the current–voltage relationship and slowing the kinetics of channel closing (deactivation). In contrast, NTRs did not measurably regulate hERG1a channels. A short NTR (encoding amino acids 1–135) composed primarily of the PAS domain was sufficient to regulate hERG1b. These results suggest that isolated hERG1a NTRs directly interact with hERG1b subunits. Our results demonstrate that deactivation is faster in hERG1a/hERG1b channels compared to hERG1a channels because of fewer PAS domains, not because of an inhibitory effect of the unique hERG1b NTR. A decrease in outward current density of hERG1a/hERG1b channels by hERG1a NTRs may be a mechanism for LQTS

    Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH -Mutant Molecular Profiles

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance

    Fundulus as the premier teleost model in environmental biology : opportunities for new insights using genomics

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 2 (2007): 257-286, doi:10.1016/j.cbd.2007.09.001.A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.This material is based on work supported by grants from the National Science Foundation DBI-0420504 (LJB), OCE 0308777 (DLC, RNW, BBR), BES-0553523 (AW), IBN 0236494 (BBR), IOB-0519579 (DHE), IOB-0543860 (DWT), FSML-0533189 (SC); National Institute of Health NIEHS P42-ES007381(GVC, MEH), P42-ES10356 (RTD), ES011588 (MFO); and NCRR P20 RR-016463 (DWT); Natural Sciences and Engineering Research Council of Canada Discovery (DLM, TDS, WSM) and Collaborative Research and Development Programs (DLM); NOAA/National Sea Grant NA86RG0052 (LJB), NA16RG2273 (SIK, MEH,GVC, JJS); Environmental Protection Agency U91620701 (WSB), R82902201(SC) and EPA’s Office of Research and Development (DEN)

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore